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Constitutive Relationships

i. 0 SUMMARY

The results of a twenty (20) month technical program, entitled "Research and

Development Program for Nonlinear Structural Modeling with Advanced Time-Temperature

Constitutive Relationships", are presented. This program was conducted by Pratt

and Whitney Aircraft and the United Technologies Research Center for the NASA-Lewis

Research Center under Contract NAS3-22055. The program included: (i) the evalua-

tion of a number of viscoplastic constitutive models in the published literature;

(2) incorporation of three of the most appropriate constitutive models into the

MARC nonlinear finite element program; (3) calibration of the three constitutive

models against experimental data using Hastelloy-X material; and (4) application of

the most appropriate constitutive model to a three dimensional finite element analy-

sis of a cylindrical combustor liner louver test specimen to establish the capa-

bility of the viscoplastic model to predict component structural response.

Based on a qualitative evaluation in Task I, three viscoplastic constitutive

theories of material behavior, namely: (i) Walker's functional theory; (2) Miller's

theory; and (3) Krieg, Swearengen and Rohde's theory, were chosen for further study

in Task IV. Evaluations of the three theories were based on a comparison of the

predicted and the experimentally observed constitutive response of Hastelloy-X

material developed in Task II. Each theory was incorporated into a subroutine

of the MARC nonlinear finite element program in Task III. (A listing of the

FORTRAN subroutine delivered to the NASA-Lewis Research Center is given at the end

of the report.) Based on the evaluations in Task IV, Walker's functional theory

was chosen to analyze the structural response of a combustor liner induction rig _

test specimen under temperature and strain cycles comparable to those in actual

engine operation. The MARC subroutine incorporating the functional theory was

delivered to the NASA-Lewis Research Center and installed for use on the UNIVAC ii00

comp ut er.

The three viscoplastic constitutive theories were incorporated into the MARC

program by means of an initial stress technique. All of the material nonlinearity

in the constitutive equations is incorporated into an initial load vector and

treated as a pseudo body force in the finite element equilibrium equations.

The structural analysis of the combustor liner specimen under complex thermo-

mechanical loading cycles has shown a deficiency in the currently proposed visco-

plastic constitutive theories. These theories use various internal state variables



which employ a hardening-recovery format to determine their growth. The growth
of the internal state variables due to hardening takes place only in the presence
of inelastic deformation, while the recovery of the internal state variables can
take place in the absence of inelastic deformation. Because internal state variable
growth due to hardening can only take place in the presence of inelastic deformation,
no change in the state variables (other than recovery or annealing) can take place
during the elastic unloading phases of a thermomechanical cycle. Experimental evi-
dence suggests that the state variables can changewith temperature variations
during the elastic unloading phase of a thermomechanical cycle.



2.0 INTRODUCTION

2.1 Program Need

The overall operating cost of the moderngas turbine engine is greatly
influenced by the durability of combustor and turbine structural componentswhile
operating at high temperatures. During each flight cycle, these componentsundergo
large thermally induced stress and strain cycles which include significant amounts
of creep and relaxation. Requirements for higher turbine inlet temperatures, uni-
formity of temperature profiles, increased turbine cooling, and reduced emission
levels have increased heat and pressure loads on combustor liners, while limiting
the amount of air available for cooling the liners. Creep/fatigue cracking and
creep buckling distortion of combustor liners reduces turbine durability through
higher temperatures, and through impact and erosion damagecaused by liberated
pieces of the liner and hard carbon particles.

2.2 Program Objectives

The current program addresses a critical issue in the development of advanced
life prediction technologies - the need to develop advancedviscoplastic constitu-
tive relationships and the evaluate their effectiveness in predicting the cyclic
stress-strain history at critical fatigue locations in major hot section components.

In order to meet the objectives of the current program, the advanced consti-
tutive models have been specifically calibrated against Hastelloy-X material which
is used in the construction of combustor liners. But the constitutive models
themselves, and the methods developed to evaluate the material constants required
to support the models, are generally applicable to other materials. In addition,
the modular form of the computer routines developed in the program should allow
their incorporation, with necessary changes, into any nonlinear structural analysis
finite element program.

2.3 Program Relevance

The current program provides an improved structural analysis capability and
forms a sound base for future improvements in mission life analysis programs. With
such screening tools available it will be possible to ensure that only promising
new candidate schemesare put into hardware without waiting for one or two years Of
field operation to provide a feedback to the design scheme.

Improvements in hot section componentdurability will have a profound impact on
the operating costs of high bypass ratio turbofan engines through reduced maintenance
cost. Equally important is the need to achieve reduced emissions levels and fuel



consumptionwhile maintaining the durability of hot section components. The
achievement of advancementsin hot section componentdurability technology will
directly support the maintenance of U.S. leadership in the aircraft gas turbine
engine industry.

2.4 Background

The overall operating cost of the moderngas turbine engine is significantly
affected by the durability and efficiency of the major hot section components, the
combustor and turbine. Primary responsibilities of the combustor are gas tempera-
ture level and pattern control, required for efficient turbine operation, and ex-
haust emission control at the various flight operating conditions. These goals
are accomplished by the precise metering of air throughout the combustor structure.
The high pressure and high combustion gas temperature characteristics of this
environment require that the combustor liner be cooled for durability.

These requirements for control of exit gas temperature, emissions,and metal
temperature generate an intense competition for utilization of combustor airflow.
The more aggressive performance, efficiency, and emission goals set for future en-
gines emphasize the need for development of durable combustor structures which can
operate with reduced levels of cooling air. This requires detailed knowledge of the
operating environment and the ability to accurately predict structural response for
these loadings.

At high operating temperatures, the time dependenceof the inelastic behavior
of the structural material is a significant consideration in the design and analysis
of combustor liners. Currently, most combustor liners are constructed of sheet
metal louvers which rely on convective film cooling. Details of a louver geometry
are sho_rnin Fig. 1 where the individually formed pieces are seamwelded together
in the fabrication of the louver liner. Cooling of each individual louver is
accomplished by compressor discharge air, introduced into the chamber created by
the louver lip and knuckle region to generate an insulating film of cooling air on
the downstreampanel. Degradation of the cooling film, as it movesalong the panel,
results in increased metal temperature in the seamweld and louver lip regions. The
thermal gradient between these regions and the knuckle of the next louver is a
function of the engine operating condition. Figure 1 indicates the typical knuckle
location (B) which is generally cooler than the typical louver lip location (A).
The temperature difference between these two locations creates thermal stresses in
the combustor liner. At the maximumpower point, the thermally induced stress and
strain state at the louver lip has significant amounts of plasticity which, when
repeated over subsequent engine flight cycles, results in creep/fatigue failure of
the liner. In large diameter annular combustor liners, fatigue cracks initiate in
the louver lip region and grow axially toward the seamweld. Continued growth can
result in distortion of the local cooling air stream, resulting in over-heating and
burning of the liner and serious damageto the turbine components. Typical liner
failures of this type are shownin Fig. 2. Analytical modeling and life prediction



of this kind of structural response has been hamperedby lack of well-calibrated
temperature data, high temperature cyclic material information, and precise engine
failure data. With the advent of improved thermal and structural analysis capa-
bilities and the development of test facilities to provide well-controlled component
failure data, new structural modeling strategies and life prediction systems can be
proposed and calibrated for the development of improved combustor liner structures.
With such analytical screening tools available, it will be possible to ensure that
only promising new candidate schemesare put into hardware without waiting for one
or two years of field operation to provide feedback to the design scheme.

Life prediction of combustor liners requires a thorough knowledge of the therma_
environment, accurate material characterization, general capability stress analysis
techniques, calibrated failure data, and a life prediction model. The advent of
general purpose finite element programs has provided a capability for detailed
modeling of engine hot section componentswhere the componentstructural response
is dominated by significant amounts of nonlinear material behavior. However, the
structural analysis of such components is usually carried out in nonlinear finite
element programs, such as MARC(Ref. i), which possess a degree of programming
sophistication far in advance of their constitutive material modeling capability.

Most nonlinear finite element programs, in keeping with an accepted practice
in the elevated-temperature design community, partition nonlinear elevated-tempera-
ture material behavior into rate-dependent "creep" and rate-independent "plasticity"
components. Each componentis assumedto obey a separate constitutive law in which
the rate-dependent creep strain is assumedto be independent of the time-independent
plastic strain and the_plastic strain is assumedto be independent of the creep
strain. No provision for interaction between creep and plastic behavior is present
in the constitutive equations. These theories are therefore of questionable value
at high temperatures where such interactions are knownto occur.

.In addition to the inability to model the interaction between creep and

plasticity, most of the classical plasticity theories suffer from an inability to

accurately model material behavior under cyclic load conditions. Under such

loading conditions the classical theories are unable to predict the strain harden-

ing/softening characteristics of the material. These limitations in constitutive

modeling behavior have recently been discussed at a number of symposia (Refs. 2-6)

and also in some depth by Krempl (Ref. 7).

Since_ the constitutive material model lies at the heart of all general purpose

nonlinear finite element codes, including the MARC program, it is clear that the

development and efficient implementation of new viscoplastic constitutive models

into such programs is needed before the full potential of such codes can be fully

utilized for advanced high temperature component structural analysis.



State-of-the-art finite element methodology and life prediction algorithms
have been evaluated against failure data from a combustor liner induction rig test
specimen under contract NAS3-21836(Ref. 8), with the NASA-LewisResearch Center.
The work described in the present report provides an enhancedability to assess the
degree of cyclic nonlinear structural behavior generally associated with thermo_
mechanical fatigue damage. A flow chart indicating where better material modeling
capability fits into an improved life prediction schemeis shownin Fig. 3.

2.5 Scope of Program

A twenty (20) month program was conducted to develop and evaluate a numberof
time-dependent constitutive theories suitable for the structural analysis of com-
ponents which operate at elevated temperature. The work effort was organized into
the following tasks.

Task 1 - Constitutive Model Selection

Ten viscoplastic constitutive models, available in the published literature,

were examined to assess their potential capabilities and limitations in representing

the thermomechanical response experienced by components (such as a combustor liner)

which operate in a cyclic elevated temperature environment. Based on this examina-

tion, three (3) theories were selected for further evaluation and incorporation

into the MARC nonlinear finite element program.

Task 2 - Materials Testing

Specimen tests were conducted using a representative combustor liner material,

Hastelloy-X, to determine the required temperature dependent material constants and

to evaluate each of the three selected constitutive theories. These tests utilized

smooth, uniaxial bar specimens of Hastelloy-X together with a closed loop servo-

hydraulic INSTRON testing machine. The following tests were performed on the uni-

axial bar specimens:

(a) Fully reversed cyclic stress-strain tests for a range of strain rates and

temperatures consistent with the operating conditions of a representative

combustor;

(b) Creep tests at various stress levels and temperatures starting from various

points on steady-state hysteresis loops executed at constant strain rate

under fully reversed strain controlled conditions;

(c) Stress relaxation tests at various temperatures starting from zero initial

strain values on steady state hysteresis loops executed at various strain

rates under fully reversed strain controlled conditions.



Tests (a), (b), and (c) were used to determine the material constants for each of
the constitutive theories at temperatures ranging from 427°C to 982°C (800°F to
1800°F).

A "faithful cycle" thermomechanical test having a prescribed strain-tempera-
ture history appropriate to that of a critical combustor liner fatigue location
(location A at the louver lip in Fig. i) provided an experimental thermomechanical
hysteresis loop for evaluation of the constitutive theories under complex loading
cycles involving large changes in temperature and strain rate.

TNsk 3 - Incorporation of Theories into Finite Element Program

Each of the three theories was incorporated into a FORTRAN user subroutine of

the MARC nonlinear finite element program. An initial stress technique was used

in which the incremental constitutive relationship used in evaluating the incremental

initial load vector was determined by a subincrement method. An integral recursion

relation was developed for Walker's functional theory which has proved to be stable

and accurate, even for large incremental time/load steps. Miller's theory and the

theory of Krieg, Swearengen and Rohde have been formulated as integral theories,

but have not, as yet, been incorporated in integral form into the MARC program.

These theories have been integrated over each subincrement by means of an explicit

Euler forward difference method.

Task 4 - Comparison and Evaluation of Candidate Theories

The three candidate constitutive theories were evaluated by comparing the pre-

dicted uniaxial response of Hastelloy-X material with the experimental results

generated in Task 2. Based on these evaluations the functional theory was selected

to analyze the structural behavior of a simulated combustion chamber outerliner.

TheFORTRAN subroutines for both the differential and integral forms of the func-

tional theory were then delivered to the NASA-Lewis Research Center and installed

in the MARC program for use on the UNIVAC ii00 computer. Two demonstration problems

were then executed to ensure correct functioning of the computer program at the

NASA-Lewis Research Center.





3.0 TASKI - TIME-DEPENDENTCYCLIC
PLASTICITYMODELSELECTION

3.1 Constitutive Theory Review

Ten isotropic viscoplastic theories, listed in Appendices 1-12, were examined
in order to assess their potential capabilities and limitations in representing the
thermomechanical structural response experienced by a jet engine combustor liner.
In order to obtain commonality in the theories, the equilibrium (rest or back)
stress has been denoted by _ij' the drag stress by K, and the inelastic strain by ,
c_j.

In the isotropic theories selected for further evaluation, it is assumed that

the inelastic response of the material is incompressible with Ckk = 0. The formu-

lation of the theories then implies that: (a) the response to a hydrostatic loading

is linearly elastic, and (b)that the shear response of the material can be deter-

mined from its uniaxial response. The inelastic incompressibility assumption can

easily be relaxed if future testing shows that the multiaxial response cannot be

determined from uniaxial behavior. From the limitedamount of available experimental

data, it would appear (Ref. 9) that the incompressibility assumption for the inelastic

response is not satisfied.

Some brief remarks on unified viscoplastic constitutive equations in general

will now be given before proceeding to review each theory.

All of the theories listed in the Appendices, with the exception of Valanis'

theory (Appendix 12) and the theory of Bodner, Partom and Stouffer (Appendix 7),

allow the expression for the inelastic strain rate under monotonic loading conditions

to be written in the form

(3 .i)

where f-i is a function of the argument ((o-_)/K) which differs amongst the theories

and whose inverse is denoted by the function f, so that ff-i = i. Under rapid

loading conditions the derivative terms in Eq. (3.1) become paramount and the

response of the material aprpoximates to 6 _ E_. The viscoplastic formulations

therefore exhibit an elastic response under infinitely fast loading conditions.

An inelastic response under infinitely fast loading conditions could be incorporated

into the theories by replacing Eq. (3.1) with

----6- "-f (3.2)



in which o = Z is the instantaneous inelastic stress-strain response. A suitable

growth law for _ would then be required.

Under monotonic loading conditions the tangent modulus of metals is much smaller

than the elastic modulus, so that for large strain values o/E << _, and the asymptotic

stress-strain relation in Eq. (3.1) may be written as

o-= -+[_ +Kf(_)] US E--+_ 00, (3.3)

Cyclic hardening of the hysteresis loops can be accommodated by allowing the

equilibrium stress _ and the drag stress K to increase with an increase in the cumu-

lative inelastic strain incurred by the material under cyclic loading conditions.

Two repositories exist for incorporating cyclic hardening into the viscoplastic

theories. First, consider the case where the equilibrium stress 9 rapidly saturates

to a limiting value at large strains, so that _ has reached a constant value at the

tip of the first cyclic hysteresis loop reversal. Cyclic hardening can be incor-

porated into the theories by assuming that the drag stress K increases with cumula-

tive inelastic strain under cyclic loading conditions. If the material exhibits a

positive strain rate sensitivity the cyclic stress amplitude increases with strain

rate under strain-controlled conditions and the term Kf(_) increases with increasing

values of _. At elevated temperatures and high strain rates the term Kf(_) in

Eq. (3.3) may be the dominant term at the tips of the hysteresis loops. Under such

conditions the hysteresis peak stresses may be approximated by the expression

o _ ± Kf(_). If the drag stress increases from an initial value of K I to a final

saturated value of K_ under Sustained cycling, the fractional increase in stress

amplitude, viz. IOF-Oil/Ioil where o F = KFf(_ ) and o I = Kif(_), is independent of

strain rate. The same relative amount of cyclic hardening is observed at all strain

rates when the strain rate is large. Hardening of the drag stress K which is a

scalar quantity, with cumulative deformation, introduces isotropic hardening into

the viscoplastic formulation. At high strain rates the original stress amplitude

±{o I = Kif(_ )} increases equally in both the compressive and tensile directions

to a final saturated value of ±{o F = KFf(_)}. An example of this type of isotropic

hardening is shown in Fig. 4.

Another type of cyclic hardening can be incorporated into the viscoplastic

theories by assuming that the drag stress rapidly saturates to a limiting value at

large strains (or remains constant). Cyclic hardening is then assumed to occur due

to increases in the value of the equilibrium stress tensor _ij at the peaks of the

hysteresis loops due to sustained cyclic loading. At the hysteresis loop peaks the

term Kf(_) is now constant for a given rate of straining and the stress amplitude

increases due to increases in the magnitude of _. This type of kinematic hardening

produces a response quite different to that produced with an isotropic hardening

q



mechanism. Since the hardening occurs in the equilibrium stress _, the relative

amount of observed cyclic hardening will decrease with increasing strain rate. At

sufficiently high strain rates where the term Kf(_) in Eq. (3.3) is paramount,

virtually no cyclic hardening in the stress amplitude will be apparent. Kinematic

hardening of the equilibrium stress produces the type of hardening observed in

Fig. 5. In this figure, the peak stress amplitude increases with cycle number

while the "yield stress" decreases with cycle number. This results in a plastic

tangent modulus which increases with cycle number. An explanation of this effect

can be obtained from an examination of Eq. (3.1). The production of an observable

value of the inelastic strain rate, _, depends on the magnitude of the stress

difference o-_. As the magnitude of _ increases at the hysteresis peaks due to

cyclic hardening, the magnitude of stress _ required to produce "yielding", or

an observable value of _ in the reverse direction, decreases. In general, it is

appropriate to incorporate both forms of cyclic hardening into the constitutive

formulation. The hardening/softening mechanisms adopted by the unified viscoplastic

theories are displayed in Table i.

In addition to differences in the functional form adopted for the growth of

the inelastic strain rate with the state variables _ and K in Eq. (3.1), the visco-

plastic theories also differ in the functional form assumed for the growth laws

which determine the evolution of the state variables _ and K. These state variables

are assumed to evolve according to differential constitutive equations which exhibit

a hardening/recovery format. At large strain values these state variables saturate

to limiting functional forms which, in the theories of Walker, Chaboche and Lee &

Zaverl, are independent of strain rate at high rates of strain. In the remaining

state variable theories the limiting functional forms of _ and K depend on the

strain rate even at high rates of strain.

Saturation of the equilibrium stress and drag stress state variables is

achieved when the antagonistic effects of hardening and recovery cancel each other

in the state variable evolution equations. If these equations are written in the

form

&:f_:-f2D. 161-f31,_l (3.4)

and

_:: f41c:l-f5 K I_:1- f6 K, (3.5)

where fl' f2' "''f6 are functions of _ and K, and c is the inelastic strain rate,

then the limiting saturation values are achieved when the growth rates of _ and K

become small. One may therefore set _ = 0 and _ = 0 to obtain the limiting forms

of _ and K as

i0



TABLE i

MECHANISM FOR CYCLIC HARDENING/SOFTENING IN THE

UNIFIED VISCOPLASTIC THEORIES

Hardening/Softening,

,due_to both _ and K

Walker

Chaboche

Lee & Zaverl

Hardening/Softening

due to K**

Miller

Hardening/Softening

due to _***

Cernocky and Krempl

No Hardening/

softening

Krieg,

Swearengen &

Rohde

Hardening/softening of the _ and K state variables implies a combination of

cycle dependent kinematic hardening with an isotropic hardening component

Hardening/softening of the K state variable implies a combination of ideal

kinematic hardening with an isotropic hardening component

Hardening/softening of the _ state variable implies cycle dependent kinematic

hardening with no isotropic component

No hardening/softening of the state variables implies ideal kinematic hardening

ii



f21dl+f31#,l/£

and

f41cI
K=

f51_:l+f6
These limiting forms depend on the strain rate at low rates of strain.

(3.6)

of strain f21&l >> f31_I/_ and f51cl >>At high f6"rates

then achieve the rate independent forms

The state variables

Q, = +- {fl (Q. ,K)/f2 (S/., K ) } (3.7)

and

(3.8)

The terms f2_Icl and f5KIcl in Eqs. (3.4) and (3.5) which are responsible for these

rate independent limits may be called dynamic recovery terms, since they are acti-

vated only in the presence of an inelastic strain rate. The terms f31_l and f6K

in Eqs. (3.4) and (3.5) represent the effects of static thermal recovery and are

activated even in the absence of an inelastic strain rate. If the dynamic recovery

terms are absent the limiting values of the state variables may be written in the

rate dependent forms

g : c {fl(,£,, K)/f3(#,, K )} (3.9)

and

(3.10)

The limiting state variable behavior of some of the viscoplastic formulations is

listed in Table 2. It should be emphasized that although some formulations exhibit

a rate independent state variable behavior at high strain rates, the viscoplastic

theories still exhibit a rate dependent stress-strain response through the presence

of the function f(_) in Eq. (3.3).

12



TABLE 2

LIMITING BEHAVIOR OF STATE VARIABLES AT LARGE STRAIN RATE

Walker

Chaboche

Miller

Lee &

Zaverl

Bodner &

Partom

Krieg,

Swearengen

& Rohde

Cernocky &

Krempl

Hart

Rate Independent

Rate Independent

Rate Dependent

Rate Independent

Not used

Rate Dependent

Rate Independent

Rate Dependent

K

Rate Independent

Rate Independent

Rate Dependent

Rate Independent

Rate Dependent

Rate Independent

Not Used

Z

(see Appendix 7)

Rate Independent

If No recovery in z

(see Appendix ii)

Rate Dependent

13



The behavior of the viscoplastic theories under creep and relaxation conditions

is governed by the growth of the state variables. Figure 6 shows the steady state

stress-strain hysteresis loop GJAHCFIG executed at a constant strain rate magnitude

under fully reversed strain controlled conditions, while the equilibrium curve is

shown as the "S" shaped hysteresis loop DEF. If, under steady state cycling, t_e

stress is held constant at point A on the hysteresis loop the material will creep

along the line ABC at constant stress. Initially, when the stress is held constant

at point A, the equilibrium stress _ is determined by the stress value at point D.

As the material creeps along ABC the equilibrium stress grows along the curve DEF

according to the growth laws for _ in the Appendices. The difference between the

actual stress and the equilibrium stress decreases to a constant value during creep.

Since the creep rate depends on this difference, the creep rate also decreases

(primary creep) and then remains constant (secondary creep). If the initial stress

is large enough, so that the initial value of the equilibrium stress is at its sat-

uration value, then the difference o-_ will remain constant in the creep test and

secondary creep will occur without a primary transient. In the case where creep

initiates at point J in Fig. 6, where the stress lies below the peak of the equili-

brium stress-strain curve, no secondary creep takes place and creep terminates at

point D on the equilibrium stress-strain curve.

If the stress is held constant at point C on the unloading branch of the

hysteresis loop, the initial value of o-_ _ CF is small, and very little creep

is observed initially. At elevated temperature the equilibrium stress _ will

gradually decrease due to static thermal recovery (if included in the constitutive

formulation), so that hhe creep rate gradually increases due to the increase in

o-_. Eventually, the decrease in the equilibrium stress is halted when the harden-

ing of _, governed by the fl term in Eq. (3.4), balances the recovery terms con-

taining f2 and f3" Secondary creep then takes place at the point C. The creep

behavior on the unloading branch of the hysteresis loop may be contrasted with the

cree_ behavior, at the same stress level, on the loading branch of the hysteresis

loop. Here, the initial value of o-_ is large, and a rapid primary transient in

the creep curve is observed. This difference in creep response on the loading

and unloading branches of the hysteresis loop is shown in Fig. 7.

The behavior of the constitutive theories in relaxation is analogous to the

creep behavior. Under stress relaxation conditions at constant strain the relaxa-

tion rate depends on the difference o-_ so that if stress relaxation commences at

point A in Fig. 6, the amount of relaxation is large. However, if stress relaxa-

tion commences at point C on the unloading branch, very little relaxation is

initially observed. As with the creep behavior, the hesitation in the relaxation

curve observed on the unloading branch of the hysteresis loop eventually gives

way to more rapid relaxation as the term o-_ increases due to thermal recovery

(if included) of the equilibrium stress.
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When the initial point at which creep or relaxation commences on the unloading

branch of the hysteresis loop is below the equilibrium curve, at point I in Fig. 6,

the theories predict that the stress will initially relax upwards towards the

equilibrium curve during a stress relaxation test in which the total strain is held

constant, or will creep in the negative direction (contract) at the positive stress

value at point I during a creep test. The negative creep and negative (upward)

relaxation will terminate on the equlibrium curve if the static thermal recovery

containing f3 is absent in Eq. (3.4) governing the growth of _. However, if static

thermal recovery is included, the equilibrium stress _ will eventually drop below

the actual stress o at point I during a creep test and, with o-_ now being positive,

the m_aterial will commence creeping in the positive direction. Similarly, the

upward relaxation will cease when the equilibrium stress drops below the actual

rising stress value and normal (downward) relaxation then ensues. Figure 8 shows

that negative stress relaxation commences in compression at -21 MPa (-3 ksi) on

the unloading hysteresis branch and progresses through zero to tensile values as

the stress relaxes to_ards the equilibrium curve.

With the foregoing remarks in mind a review is now given of ten viscoplastic

constitutive theories available in the published literature.

3.2 Walker's Functional Theory

This theory (Ref. ii) was developed in an integral form by modifying the

constitutive relation fo_ a three parameter viscoelastic solid. Both the integral

and the differential forms of the theory are summarized in Appendices 1 and 2. Two

state variables, _ij.and K, are introduced into the viscoelastic theory to account

for the effects of vlscoplasticity. The equilibrium (rest or hack) stress _ij

introduces nonlinear kinematic hardening into the model to account for the Bauschinger

effect, while the drag stress K introduces isotropic hardening into the model to

account for cyclic hardening or softening of the material.

The growth law for the equilibrium stress contains both dynamic recovery and

static thermal recovery terms. At high strain rates the thermal recovery term

becomes insignificant in comparison with the dynamic recovery term and the

equilibrium stress becomes independent of strain rate. In the growth law for the

drag stress, static thermal recovery terms have been omitted, which permits the

drag stress to be written in the integrated form shown in Eq. (3) of Appendix i.

This form has been found adequate in the modeling of Hastelloy-X behavior, but

future applications may require the inclusion of static thermal recovery in the

drag stress evolution law.

The theory is capable of modeling the cyclic hardening and softening of

hysteresis loops without the use of a yield surface. Material constants required

to model cyclic hardening/softening are obtained from cyclic hysteresis tests so
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that cyclic hardening and softening can be accurately modeled. Both the

equilibrium stress g and the drag stress K contribute to the cyclic hardening

in the theoretical formulation.

Creep, relaxation and strain rate effects are modeled by a power law (Eq. (_i)

of Appendix 2) for the inelastic strain rate. This expression has been found

adequate for the representation of strain rate effects encountered in a combustor

liner material under service conditions where strain rates may vary from 10 -6 sec -I

to 10 -3 sec -I. However, it appears that modifications are necessary if strain

rates greater than about 10 -2 sec -I are encountered. In particular, at higher

strain rates, the power law expression for the inelastic strain rate predicts values

of stress in a constant strain rate tensile test which are too large (cf. (Refs.

i0 and 20)).

The integral expression for the equilibrium stress in Eq. (2) of Appendix i

contains the material constant n2 which appears outside the integral. On differen-

tiation with respect to time this integral expression reduces to the differential

form given in Eq. (2) of Appendix 2. The terms containing _ allow the equilibrium

stress to change during nonisothermal elastic excursions in which the inelastic

strain rate is zero. Reasons for the inclusion of the _ terms in the growth law

for the equilibrium stress are discussed in Section 6 of this report.

Calculations may be made with the theory to construct a theoretical yield

surface. For a given point in stress space one may construct a surface surrounding

this point such that in going from the given point to each point on the surface

the cumulative inelastic strain is the same for each point on the surface. If

this theoretical construct is called the yield surface, then the theory allows the

yield surface to translate in stress space by virtue of the presence of the equili-

brium stress (kinematic hardening) and to expand in stress space due to the presence

of the drag stress (isotropic hardening). No provision for a rotation of the yield

surface in stress space exists in the current theoretical formulation. All of the

material constants in this theory are functions of temperature and must be experi-

mentally determined at each temperature of interest.

3.3 Chaboche's Theory

This theory was developed by Chaboche (Refs. 12, 13), and is summarized in

Appendix 3. The theory is similar in form to the preceding functional theory

except that a yield surface concept is used. Inside the yield surface it is assumed

that no inelastic deformation can take place. The use of a yield surface permits

isotropic hardening to be modeled by an increase in the size of the yield surface

rather than by an increase in the drag stress state variable, K. Hence, in this

theory, K is assumed to be constant and the one-dimensional form of the inelastic

strain rate may be written in the form
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(o--0,)

Io--_1

where the brackets < > are defined by the relation

<

/O ifa<-O

<Q>=_a ifa>O

(3 .ii)

(3.12)

Here, the isotropic state variable, Y, together with the yield surface concept,

replaces the drag stress, K. Initially, the variable Y is assumed to be zero and

inelastic deformation occurs only when lo-_[>k. As Y grows with inelastic deforma-

tion, the yield surface expands and inelastic deformation takes place only when

lo-_I>k+Y. At high rates of uniaxial strain and large strain values (where o _ 0),

Eq. (3.11) takes the approximate form

o-_ Q,+Y+k+KE I/n (@_.,. + CO). (3.13)

At high strain rates _ and Y become independent of strain rate, so that for very

high strain rates •

_K@ I/n (3.14)

This equation shows that at very high strain rates, no cyclic hardening is observed.

Significant hardening will be observed only at lower strain rates when (_ + Y + k)

becomes comparable in magnitude with K _ i/n.

The growth law for the equilibrium stress contains a _ term which allows the

equilibrium stress to change with temperature during nonisothermal elastic excur-

sions. Chaboche's theory, Walker's theory, and Cernocky & Krempl's theory, are

the only viscoplastic formulations which permit such changes in the state variables

to Occur.

The yield surface can translate and expand in this formulation, but it cannot

rotate. All of the material constants are functions of temperature and must be

experimentally determined at each temperature of interest.
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3.4 Miller's Theory

This theory (Ref. 14) is summarized in Appendices 4 and 5. Instead of a power
law for the inelastic strain rate, the theory uses a hyperbolic sine function. In
addition, only the material constants Ko and 0' are temperature dependent, Ko being
the initial value of the drag stress K.

For monotonic one-dimensional loading, Miller's theory maybe written in the
form

& :Be _ sinh -_ n
E (3.15)

{ }°,_:HI(;-HjB81 sinh(Al,O,) , (3.16)

t_= H_ _;I(C2 +Q,- A2 K 3/AI )- H2 C2 Be' {sinh (A2K 3)} n. (3.17)

The equilibrium stress is assumed to harden linearly with inelastic strain.

Only static thermal recovery is included in the growth law for the equilibrium

stress. In the absence of a dynamic recovery term, the equilibrium stress continues

to increase with increasing strain rate; at high strain rates the growth law does

not become independent of strain rate. In modeling the stress-strain behavior of

materials, this theory exhibits the characteristic tri-linear curve in Fig. 9. The

first portion of the tri-linear curve in Fig. 9 corresponds to an "elastic" loading

phase in which the inelastic strain rate and rate of growth of the equilibrium stress

is small. On entering the inelastic region the equilibrium stress grows linearly

with inelastic strain which gives rise to the second portion of the tri-linear stress-

strain curve. This may be seen by noting that in this region the growth law for

(with the neglect of the static thermal recovery term) may be written as

_ HlC , or since _ << E_, as _ _ HI_. In this region, where the static thermal

recovery term is small, the equilibrium stress increases linearly with strain.

Since 6 << E_, Eq. (3.15) governing the growth of inelastic strain, may be written

for monotonic loading in the form

(7=_,+K{sinh-I[ _ _11nl213) • (3.18)

Usually, the drag stress K grows slowly with deformation and the rate dependent

term in Eq. (3.18) may be assumed to be constant (for _ = constant). The stress

then increases according to the relation o _ Hlg + constant. Finally, the equili-

brium stress reaches values sufficient to activate the static thermal recovery

term in Eq. (3.16). This term increases very rapidly according to a hyperbolic
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sine law and when it reaches a value equal in magnitude to that of the linear
hardening term, the equilibrium stress reaches a constant saturated value. This
gives rise to the third tri-linear portion of the stress-strain curve in Fig. 9.

The equilibrium stress saturates rapidly with deformation in this theory so
that no provision exists to model cyclic hardening or softening by meansof cyclic
changes in the equilibrium stress. Cyclic changes in the stress-strain response
are modeled by cyclic changes in the drag stress. In the evolution equation for
the growth of the drag stress both dynamic recovery terms and static thermal
reco_veryterms are present. At fast strain rates only the dynamic terms (those
multiplied by 161) are significant. Nowat large strain values the saturated value
of the equilibrium stress _ maybe determined from Eq. (3.15) by setting _ = 0.
Hence, denoting the saturated value with the subscript s, the saturated equilibrium
stress maybe written as

sinh -I_s- (3.19)

from which it is evident that the saturated equilibrium stress increases with strain

rate. From Eq. (3.17), only the first bracket is paramount at fast strain rates.

Within this bracket both g and K increase with strain rate. When the drag stress

reaches a saturation limit at a given constant strain rate, one may set K = 0, and

by neglecting the constant C 2 in comparison with _ and K, one obtains at satura-

tion

A_._LZ 3
s- AI K s • (3.20)

This relation was derived under the assumption of rapid strain rate. But from the

construction of Eqs. (3.15)-(3.17), the relation may be shown to be valid at all

strain rates. For example, if Eq. (3.20) holds at all strain rates for the saturated

values of _ and K, then setting Eq. (3.17) equal to zero at lower strain rates

where static thermal recovery is important produces the relation

3
I(:1 =Be' {sinh (AzKs)}n

(3.21)

Moreover, by setting Eq. (3.16) equal to zero, the saturated equilibrium stress is

governed by the relation

C =Be1 {sinh (AIQ, s)} n. (3.22)
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The relation between the saturated equilibrium and drag stresses given in
Eq. (3.20) is now seen to hold at all strain rates by equating equations (3.21) and
(3.22). One further relation between the equilibrium stress, drag stress and actual
stress maybe obtained by equating the saturated inelastic strain rates given in
Eqs. (3.21) and (3.22) with that given in Eq. (3.15). Oneobtains

( ) A2_S-aS _=A,aS= K_ " (3.23)
Ks

The assumption is now made that under steady-state creep conditions, the inelastic

strain rate in Eq. (3.15) is governed by the Garofalo equation, viz.,

(;=Be_{sinh( A%)} n'. (3.24)

Hence, under steady state conditions

){ A2 3°'s - Q'S = AI £Zs = --_-i KS = Acts"
Ks

(3.25)

The saturated equilibrium stress is linearly related to the saturated stress while

the saturated back stress depends on the one-third power of the stress. This one-

third power relation for the saturated drag stress, which is derived from the

effect of warm working at various temperatures on the subsequent room-temperature

yield strength of aluminum and 304 stainless steel, was assumed by Miller in

setting up the framework of the viscoplastic theory.

Since cyclic hardening is incorporated into the isotropic drag stress state

variable, hardening may be observed at all strain rates. At high strain rates

the relative amount of cyclic hardening is the same for all strain rates as

emphasized in Section 3.1.

The state variables _ and K do not contain _ terms so that during nonisothermal

"elastic" excursions the state variables "stick" at the values they had on entering

the "elastic" region. If a theoretical yield surface is constructed with this

theory, the yield surface can expand and translate in stress space, but no rota-

tion of the surface is permitted.

The material constants n, HI, H2, AI, A2, C2, Q* and K of Appendix 4 are

assumed to be independent of temperature. Those which depend on temperature are

the elastic constants % and _; the initial value of the drag stress Ko, which

depends on the initial temperature at time t = 0; and the constant 0' defined in

Eqs. (7) and (8) of Appendix 4.

20



3.5 Lee & Zaverl's Theory

This theory (Ref. 15) employs a yield surface, which, in its general anisotropic
form, can expand, translate and rotate. In this respect, it is the only theory_
considered in this report which allows the yield surface to rotate. However,
in the more restricted isotropic form of the theory given in Appendix 6, no yield
surface rotation due to deformation can occur.

Cyclic hardening has been incorporated into the yield stress state variable Y,
the drag stress state variable K, and the equilibrium stress state variable 2ij.
Since the inelastic strain rate in Eq. (i) of Appendix 6 depends on these state
variables, it is appropriate to call them primary state variables. These state
variables reach a saturation value at large strains by virtue of dynamic recovery
terms alone, since no static thermal recovery terms are included in the theory.
The dynamic recovery terms, which allow the primary state variables to reach their
saturation values, contain the state variables o_j and yS. These additional state
variables maybe called secondary state variables since they govern the growth of
the primary state variables. Becausestatic thermal recovery terms are absent in
the growth laws for the primary state variables, the saturated values of Y, K and
2ij are independent of strain rate. Moreover, the omission of _ terms in the state
variable growth laws prohibits changes in the state variables during nonisothermal
"elastic" excursions. The theory is more demandingon computer storage requirements
than the preceding theories due to the presence of the secondary state variables.

t

3.6 Bodner, Partom and Stouffer's Theory

This formulation (Refs. 16-18), which is summarized in Appendix 7, differs

from the other visoplastic theories by rejecting the concept of the equilibrium

stres_s state variable _... It is not, therefore, possible to describe negative
ij

creep effects at positive stress values, negative relaxation (see the experimental

data in Fig. 8), or an aftereffect type of recovery in the material when the stress

is removed.

The theory is capable of modeling kinematic and isotropic hardening, but

accurate modeling of cyclic effects will probably require the constant q (which is

equal to one for purely isotropic hardening and equal to zero for purely kinematic

hardening) in Appendix 7 to be taken as a function of the plastic work.

Bodner and Stouffer have formulated a general anisotropic theory in Ref. (17),

but only the isotropic form of this theory is shown in Appendix 7. Further comments

concerning a generalization of the anisotropic model by Young may be found in

Ref. (18).

The theory does not contain _ terms in the evolution equation for the state

variable z. Consequently, this state variable cannot change during nonisothermal

"elastic" excursions which precludes an accurate analysis of thermomechanical

cycling.
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If a theoretical yield surface is constructed from the model the surface can
expandand translate in stress space but no rotation is permitted in an isotropic
material.

3.7 Krieg, Swearengenand Rohde's Theory

This theory uses a power law to model the inelastic strain rate and was
developed in a differential form (Ref. 19) by the authors. Both differential and
integral forms of the theory are presented in Appendices 8 and 9.

An equilibrium stress and back stress are included in the formulation but no
explicit provision exists to model cyclic hardening in either of the state variables.
That is to say, the constants AI - A5 appearing in the growth laws for the equili-
brium and drag stresses do not explicitly depend on the cumulative inelastic defor-
mation. Cyclic hardening could be modeled by assuming that the constants A4 and
A5 are small in the growth law for the drag stress, so that the drag stress grows
slowly with deformation.

The state variables saturate at large strain values whenthe static thermal
recovery terms balance the linear strain hardening terms. No dynamic recovery terms
are present in the formulation so that the saturated values of the state variables
depend on the strain rate. Moreover, the linear hardening terms and the static
thermal recovery terms in the state variable evolution equations produce stress-

¢

strain curves and hysteresis loops which exhibit the same tri-linear character as

Miller's theory. The rapid final flattening of the stress-strain curve occurs

when the static thermal recovery term grows rapidly with equilibrium stress accord-

ing to the exponential law in Eq. (2) of Appendix 8. The sharpness of the final

transition can be mitigated to some extent by assuming that the constant A 3 in

Eq. (2_ is very small. In this case the static thermal recovery term grows more

slowly according to the fourth power of the equilibrium stress and this produces a

smoother transition in tile stress-strain curve and hysteresis loops.

The theory does not include _ terms in the state variable evolution equations,

so that the state variables cannot change during nonisothermal "elastic" excursions.

If a theoretical yield surface is constructed from the model the surface can expand

and translate in stress space but no rotation of the surface can occur.

3.8 Cernocky and Krempl's Theory

This theory (Ref. 20) is written in an integral form in Appendix i0. In this

particular form the theory is suitable for monotonic loading; for cyclic loading

the "constants" Et, _, S, K, 6 and _ are updated discontinuously according to a

set of rules. Some of these updating rules are presented in Ref. (21) and the

others are currently under development.
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Both an equilibrium stress _ij and a drag stress K are utilized in the theory.
The updating of Et, _ and B in the equilibrium stress and the updating of the drag
stress K with cyclic deformation allows for hardening in both state variables.
Explicit relations are used for the equilibrium stress and the drag stress, so that
only one differential (or integral) equation has to be solved (Eq. (i) in Appendix
I0) rather than three. At large strains the state variables saturate to values
which are independent of strain rate. Static thermal recovery terms have not yet
been specified in the theoretical formulation.

_Presumably, since the "constants" in the equilibrium stress, and in _he drag
stress itself, depend on the current temperature, the model permits the state
variables to change under nonisothermal "elastic" excursions.

A theoretical construction of the yield surface from the model shows that the
surface can both expandand translate in stress space, but cannot rotate.

W

3.9 Hart's Theory

Hart's theory (Ref. 22) is summarized in Appendix ii. Two state variables are

employed, one being the equilibrium stress gij' and the other a scalar variable,
o*, called the "hardness" by Hart. The "hardness", o*, may be called a secondary

state variable since it serves only to modify the equilibrium stress state variable,

_ij' at large strain values (or after the imposition of cyclic loading) in the same
manner as the secondary state variables in Lee & Zaverl's constitutive theory

(Appendix 6).

The equilibrium stress grows linearly with inelastic strain in the initial

loading phase and saturates when the static thermal recovery term containing the

"hardness" state variable balances the linear work hardening term (the interpreta-

tion of the "hardness" term as being a static thermal recovery term is the author's).

Since dynamic recovery terms are not included in the theoretical formulation, the

saturated value of the equilibrium stress depends on the strain rate. The linear

work hardening growth of the equilibrium stress together with the rapid growth of

the static thermal recovery term at large strain values produces the tri-linear

stress-strain response characteristic of Miller's theory and Krieg, Swearengen and

Rohde's theory. A demonstration of this tri-linear behavior may be found in

Fig. 6 of Delph's review paper (Ref. 23). Since the drag stress is assumed to be

constant the theory can model only kinematic hardening. Due to the changes in

the "hardness" state variable the saturated equilibrium stress can change with

cumulative deformation during cycling in the manner depicted in Fig. 5. Here the

peaks of the stress-strain hysteresis loop increase in amplitude, the "yield stress"

decreases in value, and the tangent modulus increases as cycling continues. This

behavior is just noticeable in Fig. 6 of Delph's paper (Ref. 23). It would have

been even more apparent if Delph had increased the strain amplitude in his theo-

retical predictions. The fact that the drag stress is constant implies that iso-

tropic hardening is absent in the theory. Hence, at high strain rates, where the

saturated stress values in the peaks of hysteresis loops have the approximate
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.i/n
values, o _ ± K_ , the hardening is not apparent. The relative amount of
hardening will increase at lower strain rates where the stress has the approximate
form o _ ± (_ + K_i/n).

The theory does not include _ terms in the state variable evolution equations,
so that the state variables cannot change during nonisothermal "elastic" excursions.
If a theoretical yield surface is constructed from the model the surface cannot
expand or rotate in stress-space since only kinematic hardening is permitted.

3.10 Valanis' Endochronic Theory

The endochronic theory (Ref. 24), summarizedin Appendix 12, has been used
mainly in a rate-independent form. Strain rate effects with creep-plasticity inter-
action are still being developed by Wuand Chen (Ref. 25) and the rate-dependent
aspect of the theory is still open. In the theory proposed by Wuand Chen (Ref. 25)
different material functions are used in the formulation to describe the behavior
of the material under constant strain rate, creep and relaxation conditions. A
unification of the three material functions into one general function is required
before the theory can be used under arbitrary loading conditions at high temperatures.

3.11 Laflen and Stouffer's Theory

This theory (Ref. 26) has no pro'vision for cyclic hardening or static thermal
recovery. It is therefore not suitable for describing the constitutive behavior
of materials which exhibit significant cyclic hardening/softening. In its integral
form the theory requires the evaluation of the entire integral of the strain history
from the initiation of loading to the current time. For each new choice of the
current time the entire integral must be recomputed (Ref. 28). This will exact
severe economic and time penalties if it is used in a nonlinear finite element
structural analysis code.

Three theories were selected for further evaluation based on the constitutive
review in this section. These are: (a) Walker's functional theory; (b) Miller's
theory; and (c) Krieg, Swearengenand Rohde's theory. However, the remaining
theories are undergoing active development and it maybe that in several years it
will be possible to construct a hybrid theory which contains the best elements
from each theory.
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4.0 TASKII - CONSTITUTIVETESTING

4.1 Choice of Material

Jet engine combustor liners are constructed from Hastelloy-X material. T_is
material is a fine grained nickel base alloy which has relatively low strength but
high ductility at elevated temperatures. The material constants required by the
viscoplastic constitutive theories must be determined at various temperatures up
to 2000°F (I093°C) in order to predict the structural response of combustor liners
under engine operating conditions.

4.2 Choice of Testing Machine

The tests described in this section were conducted on uniaxial bar specimens
using an INSTRONservo-hydraulic closed-loop testing machine capable of maintaining
load or strain control with the inclusion of hold times. Specimensare maintained
at a given temperature (to within 2°C (4°F)) in an oven heated by resistive elements
which surround the specimen. Temperature control is maintained by a closed-loop
system with thermocouples located at the ends of the cylindrical specimen. ASTM
Class B-I extensometry is used for the axial strain measurement. Load and total
strain for this system can be controlled to within one percent. At + 0.6 percent
strain amplitude, a strain rate of 3.87 x 10-3 sec-I corresponds to traversing the
hysteresis loop about ten times per minute. Since the temperature of the specimen
is controlled by thermocouples placed at its ends, it is possible that the
dissipation Of inelastic work into heat at these strain rates could raise the
temperature at the center of the specimen above that registered by the thermocouples
located at its ends. A computation in Appendix 13 shows that at 982°C (1800°F) the
rise in temperature of the center of the specimenabove the temperature at its ends
is only 0.8°C (I.4°F), so that" the effects of inelastic dissipation of work into
heat can be neglected in the data reduction of the Hastelloy-X tests.

4.3 Uniaxial Hysteresis Tests

Uniaxial bar specimens of Hastelloy-X (see Fig. i0) were tested at temperatures
of 427°C (800°F), 537°C (1000°F), 648°C (1200°F), 760°C (1400°F), 871°C (1600°F) and
982°C (i800°F).

This material is a fine grained nickel base alloy which has relatively low
strength but high ductility at elevated temperatures. At each temperature the
steady state hysteresis loops were determined under fully reversed strain controlled
conditions. The input strain history consisted of a triangular wave function from
a function generator with a strain amplitude of + 0.6 percent at 760°C (1400°F),
871°C (1600°F), 982°C (1800°F) and a strain amplitude of + 1.0 percent at 427°C
(800°F), 537°C (1000°F) and 648°C (1200°F).
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Hysteresis loops were obtained at strain rates of 1.25 x 10-6 , i.ii x 10-5 ,
3.70 x i0-5, 3.66 x 10-4 and 3.87 x 10-3 sec-I at each temperature. The material
exhibits hysteresis loops which are asymmetric with respect to the strain axis at
all temperatures, with the material being stronger in compression than in tension,
and with the asymmetry increasing with temperature. However, the hysteresis loops
are symmetric with respect to an axis which lies below the zero stress point.
Experimental results for Hastelloy-X are shownin Figs. 11-16.

At 427°C (800°F) and 537°C (1000°F) an inverse strain rate sensitivity
(Figs. ii and 12) was observed in which the peak stresses of the hysteresis loops
decreased with increasing strain rate. Apparently, the change from normal to
inverse strain rate sensitivity takes place between 537°C (1000°F) and 648°C
(1200°F). It is observed that as the temperature decreases from 982°C (1800°F)
to 648°C (1200°F) the "yield stress" of the material increases, so that the
hysteresis loops at 648°C (1200°F) show a greater stress amplitude, for a given
strain amplitude, than the hysteresis loops at 760°C (1400°F), 871°C (1600°F)
and 982°C (1800°F). However, the "yield stress" decreases when the temperature
decreases from 537°C (1000°C) to 427°C (800°F), and the stress amplitude at 537°C
(1000°F) is larger than the stress amplitude at 427°C (800°F) for the + 1 percent
strain amplitude hysteresis loops shownin Figs. ii and 12.

In their present forms the constitutive theories under consideration cannot
predict the inverse strain rate sensitivity observed in Hastelloy-X at 427°C
(800°F) an 537°C (lO00°F). However, since the strain rate sensitivity at these
temperatures is relatively small, the material constants have been chosen to make
the constitutive theories relatively rate insensitive at these temperatures.

Miller (Ref. 26) has included inverse rate sensitivity in a recent version
of his theory by including another state variable to account for the effects of
solute hardening. Effectively, this changes the drag stress of the material,
so tha.t at certain temperatures the drag stress decreases rapidly with increasing
strain rates, and the material exhibits inverse rate sensitivity. In Section 3.1
a constitutive formulation was proposed in which the response to infinitely fast
loading conditions is given by o = £, where _ is the instantaneous stress state
variable whose growth law is prescribed. Inverse rate sensitivity may then be
incorporated into the theory by assuming that the magnitude of E is smaller than
the magnitude of the equilibrium stress _ under monotonic loading conditions at
constant strain rate. Both Miller's method and the method here proposed require
the abandonmentof an infinitely fast elastic response in order to predict inverse
rate sensitivity.
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4.4 Creep and Relaxation Tests

Creep tests were performed at each temperature by starting at various points
on a steady state hysteresis loop carried out under fully reversed strain controlled
conditions at a strain rate of 3.66 x 10-4 sec-I at + 0.6 percent strain amplitude.
At a given point on the hysteresis loop the load was held at a constant value ahd
the resulting creep behavior was recorded on a strip chart. After each creep
test the material was cycled at a strain rate of 3.66 x 10-4 sec-I until the
hysteresis loop stabilized before proceeding to the next creep test. Asymmetry
in the creep response was noted at each temperature, with the material being
stronger in compression than in tension, in conformity with the uniaxial hysteresis
loop results. Figures 17 and 18 show the creep results at 871°C (1600°F) and 982°C
(1800°F), in which the strain at the beginning of each creep test has been normalized
to zero to facilitate comparison with the theoretical predictions.

In a steady state hysteresis loop executed at a constant strain rate, the
equilibrium stress will saturate to a constant value at large strain amplitudes.
This value can be determined from the preceding creep tests by locating the points
on the unloading branches of the hysteresis loop at which the initial creep rate
is zero. It should be emphasizedthat this point is difficult to define in an
accurate manner due to the fact that the initial creep rate is small over a
considerable portion of the unloading branches. A more accurate determination of
this point can be madeby observing the point at which the initial relaxation rate
is zero. However, the function generator on the present experimental equipment
would not allow a strain hold on the unloading portion of the hysteresis loop,
so that the saturated _quilibrium stress at a given strain rate and temperature was
determined from the creep results. This saturated value of the equilibrium stress
is used in the determination of the material constants.

Combustor liners are constructed from Hastelloy-X sheet material. In order to
determine if the material constants developed from the Hastelloy-X bar specimens
are appropriate for Hastelloy-X sheet material, creep tests were performed on
Hastelloy-X sheet specimens at 871°C (1600°F) and 982°C (1800°F). The sheet
specimen is shownin Fig. 19. It was initially intended to comparethe monotonic
uniaxial tensile response of bar and sheet specimens at these temperatures, but the
small area of the sheet specimens precludes this comparison. During the initial
heat-up of the sheet specimens from room temperature to 871°C (1600°F) and 982°C
(1800°F), it was necessary to keep the sheet specimensunder a small tensile load
to makesure that buckling did not occur. At these elevated temperatures the
sheet specimens creep under the small tensile load before the final temperature
is attained. Hence, a comparison of the uniaxial tensile stress-strain response
was abandoned. Instead, creep tests were repeated at 871°C (1600°F) and 982°C
(1800°F) to test the variation of secondary creep rates from specimen to specimen.
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The sheet specimenswere loaded from zero to full load in three seconds under
load control on a Data-Trak system and allowed to creep at constant load at 871°C
(1600°F) and 982°C (1800°F). Creep tests on the Hastelloy-X bar specimenswere
initiated at constant load from various points on a steady state hysteresis loop.
Since the initial conditions in the bar and sheet specimens are different it is
not appropriate to compare the primary creep behavior. However, under conditions
of steady state secondary creep the initial conditions are not of concern, and an
examination of steady state secondary creep rates will provide a valid comparison
between bar and sheet creep behavior at 871°C (1600°F) and 982°C (1800°F).

The test results are shownin Tables 3 and 4. In interpreting these results
it should be kept in mind that due to the dependenceof the creep rate on the 4th
and 5th powers of the applied stress at 982°C (1800°F) and 871°C (1600°F), viz.

= Aon where n = 4 or 5, a small error in the stress (load) measurementcan cause
large errors in the creep rate. If the experiments were turned around and the
saturated stress was measureddue to a constant applied strain rate - in a
monotonic tensile test for example - the agreement between theory and test would
improve. Most of the secondary creep rates obtained with the sheet and bar
specimens agree to within a factor of 1.5. Exceptions occur in the sheet specimen
at o = 74 MPa(10700 psi) at 982°C (1800°F) and at o = 148 MPa (21500 psi) at
871°C (1600°F). The secondary creep rates in the sheet specimenswere obtained
from strip chart records. Variations in secondary creep rates by a factor of 1.5 can
easily be obtained depending on which part of the chart the record is taken from.
This figure provides an indication of the accuracy in reading from one record of
one specimen.

From the creep tests at 871°C (1600°F) and 982°C (1800°F) one can say that
the material constants determined from Hastelloy-X bar specimens are suitable
for representing the constitutive behavior of Hastelloy-X sheet material. This
is based on the experimental agreement in strain rates at a given stress level
obtained in creep and hysteresis testing.

Relaxation behavior at 871°C (1600°F) and 982°C (1800°F) was determined by
holding the strain at a zero value on the compressive portions of the steady state
hysteresis loops carried out at 3.87 x 10-3 , 3.66 x 10-4 , and 3.70 x 10-5 sec-I with
a strain amplitude of + 0.6 percent. Representative results obtained at 982°C
(1800°F) are shownin Figs. 20 - 22.

4.5 ThermomechanicalTest

Work performed under Contract NAS3-21836with the NASA-LewisResearch Center
on a simulated combustor liner rig has shownthat after about one thousand (i000)
operation cycles (Ref. 8) fatigue cracks initiate at the louver lip (point A in
Fig. I) and propagate axially towards the seamweld (point C in Fig. i). In order
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to predict the numberof cycles to crack initiation the life prediction algorithms
require a knowledge of the stress-strain hysteresis behavior at the fatigue critical
location at point A. Since strain gages will not operate cyclically at 982°C (1800°F)_
the experimental stress-strain hysteresis behavior at point A cannot be measured.
However, the stress field is one dimensional at point A, and consists of a uniaxial
componentin the circumferential, or hoop, direction. Moreover, because the
combustor liner is a thermally driven structure, the total strain at the fatigue
critical location is zero and the mechanical strain history at this point can be
determined from the temperature history _(_) as _M(t) =_oot _(_)[_(_)/_] d_.
Thermocoupleson the louver lip provide the experimental temperature history. Thus,
both the mechanical strain history and the temperature history at the fatigue
critical location, where the stress is uniaxial, are known. This temperature vs.
mechanical strain history can then be applied cyclically to a uniaxial cylindrical
tube specimenof Hastelloy-X to determine its stress vs. mechanical strain hysteresis
behavior. Sucha test is knownas a "faithful cycle" test because it is meant to
"faithfully" represent the "true" thermomechanical environment at a critical fatigue
location in a combustor liner.

A thermomechanical test was performed on Hastelloy-X with a standard closed
loop servohydraulic test machine using low frequency (i0 kHz) induction heating
and compressedair for temperature control on the specimen (Ref. 27). Specimen
temperature measurementprovided by a radiation pyrometer, in conjunction with
independently computer controlled preprogrammedmechanical strain and temperatur e
histories, allow virtually any complex cycle to be applied to the specimen. The
system is capable of cycling at positive or negative meanstrain, with either
stress or strain contr01 and hold times within each cycle. The tubular specimen
used in the thermomechanical test is shownin Fig. 23. Axial strain is measured
from the machined internal ridges utilizing a linear variable differential
transformer and a quartz internal extensometer. Load and total strain for this
system can be controlled to within 1 percent and temperature to within 2°C (4°F).

Figure 24 shows the experimental behavior of Hastelloy-X in a thermomechanical
cycle. The temperature history consists of a sine wave with a forty one (41)
second hold period at the maximumtemperature of 975°C (1750°F) as shownin
Fig. 25, the lowest temperature in the cycle being 504°C (940°F). The mechanical
strain history is depicted in Fig. 26 and a corresponding cross-plot of the mechanical
strain vs. temperature cycle is shownin Fig. 27. Axial mechanical strain in the
specimenvaried between -0.i percent and -0.445 percent.

It should be noted that in the thermomechanical test the actual input temperature
history consists o_ a sine wave with a hold period at the maximumtemperature point
of the cycle. In the actual liner rig experiment the temperature history, measured
by thermoc0uples located at the fatigue critical location (see Fig. 68), is not
a sine wave with a hold period. To account for this slight difference in
temperature history the strain rate in the thermomechanical test is adjusted so that
the cross-plot of mechanical strain vs. temperature is the samein the thermo-
mechanical test and in the computations produced by a structural analysis of the
combustor liner rig.
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4.6 CombustorLiner Rig Test

A simulated combustor liner has been tested for fatigue life in a specially
,constructed experimental rig. This work was performed under Contract NAS3-21836
with the NASA-LewisResearch Center and is reported in Ref. 8. Cyclic engine
level temperatures and thermal gradients are generated on simulated combustor
liners by a 250 kW, 450 kHz induction heater used in conjunction with controlled
cooling air temperature and flow rate. A schematic drawing of the rig depicting
the principal componentsis shownin Fig. 28.

Cooling air is supplied to the lower plenum of the rig from a non-vitiated
"4

upstream air heater at temperatures up to 538°C (1000°F). The air in the lower

plenum is then directed through flow straightener plates to the upper flow divider

plate which permits ratioing of the shroud-side airflow to the hot-side airflow.

Shroud-side air provides the total cooling air supplied to the specimen which is

discharged to the hot-side flow annulus, and then, together with the metered hot-

side flow, ejected to ambient temperature.

The specimen is inductively heated by power supplied from a 250 kW, 450 kHz

induction heater. High frequency (450 kHz) was chosen to minimize depth of

penetration of the induced current (heat) in the test specimen to best simulate

the thermal surface loadings (radiative/conductive) experienced by combustor liners

in engine operation.

The induction coil is supported on a framework of glass-bonded mica which is

transparent to the induction field. A 48.3 cm (19 in.) diameter quartz cylinder

(also transparent to the field) is positioned between the coil and the specimen

to form the inner boundary of the hot-side flow annulus. The quartz cylinder is

retained in position by a 45.4 kg (i00 ib) quartz cover. A cylindrical test

specimen of Hastelloy-X, which simulates a combustor outer liner and incorporates

five (5) sheet metal louvers, was selected for fatigue testing (Ref. 8). Prior

to testing, the cylindrical louvered test specimen, transition pieces and top

shroud, are assembled as a unit. This provides a permanent instrumentation

installation and facilitates frequent inspection during testing. The assembled

louvered test specimen and cover are shown in Fig. 29a. Fine wire chrome-alumel

thermocouples are used to determine temperature distributions during testing.

Typical thermocouple locations are shown in Fig. 29b.

The test program consisted of a ninety (90) second thermal cycle in which the

rig cooling air was maintained at a constant temperature and flow rate (of 504°C -

2.5 kg/sec (940°F - 5.5 Ib/sec) while cycling power from the induction heater.

A representative transient and steady state temperature distribution measured on

the center (third) louver is shown in Fig. 26. The cycle consists of a twenty (20)

second transient from an isothermal distribution of temperature at 504°C (940°F)

to a maximum temperature distribution, a forty (40) second steady state portion, and

a cool down back to the original isothermal condition.
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During the testing, a maximumcircumferential temperature difference of 44°C
(80°F) was recorded at any time point in the cycle. For purposes of thermal
and structural analyses, measurementswere averaged to provide a circumferentially
uniform temperature profile.

A comparison of a theoretical transient heat transfer analysis with the
transient temperature distribution determined by the thermocouples may be found
in Ref. 8. This thermal analysis was used to produce a thermal increment file
for use in the structural analysis of the combustor liner rig specimendescribed
in Section 6.7. Thermal histories measuredby thermocouples on the specimenare
shownin Fig. 30. Note that the thermal increment file used to "drive" the three
dimensional combustor liner analysis corresponds to the actual temperature in the
combustor liner rig and is not a sine wave approximation to the temperature history.

31



TABLE3

Temperature 982°C (1800°F)

Stress (psi) (MPa)

28800 199

14300 99

10700 74

7200 50

Secondary Creep Rate
(sec-I) for Sheet Material

Spec #i 2.5 x 10-2

Spec #2 9.8 x 10-4

Spec#3 3.9 x 10-4
Spec#4 i.i x 10-4

Spec#5 1.5 x 10-4
Spec#6 8.3 x 10-5

Secondary Creep Rate
(sec-I) for Bar Material

9.0 x 10-4

1.0 x 10-4

9.0 x 10-5

TABLE 4

Temperature 871°C (1600°F)

Stress (psi) (MPa)

21500 148

14200 98

7150 49

Secondary Creep Rate -

(sec -I) for Sheet Material

Spec #7 6.1 x 10 -5

Spec #8 i.i x 10-4

Spec # 9 1.6 x 10 -5

Spec #i0 1.6 x 10 -5

Spec #ii 2.2 x 10 -6

Spec #12 2.4 x 10 -6

Secondary Creep Rate
(sec -I) for Bar Material

1.3 x 10-4

-5
1.4 x i0

1.5 x 10-6
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5.0 TASKIII - INCORPORATIONOFCONSTITUTIVE
THEORIESINTONONLINEARFINITE ELEMENTCODE

5.1 Description of The MARCProgram

The viscoplastic theories of Walker, l_iller and Krieg, Swearengenand Rohde
have been incorporated into the MARCgeneral purpose, nonlinear, finite element
program (cf. Ref. i). This program, in commonwith other general purpose finite element
programs, has been developed expressly for nonlinear structural analysis. These
programs involve sophisticated computational algorithms and advanced finite ele-
ment formulations, yet rely on constitutive models whose applicability to the hot
section componentenvironment is questionable.

The constitutive theories commonlyin use in such finite element programs
artificially partition the total strain into rate-independent plastic and rate-
dependent creep components. These computer programs are then used to approximate
the time-dependent inelastic behavior of a structural componentby alternately
applying increments of creep and plasticity. This artificial partitioning of the
total strain into componentswhich are governed by separate constitutive relation-
ships has no underlying physical basis and does not take account of the fact that
creep and plasticity should interact within the constitutive equation.

A number of viscoplastic constitutive theories, in which creep and plasticity
are united, have recently been proposed in the literature and were reviewed in
Section 3.0. Scant experimental data exists to determine the material constants
required by such theories. In addition, such theories comprise a system of "stiff"
differential equations whose lack of stability has been a deterrent to their in-
corporation into large general purpose finite element programs.

In this contract the viscoplastic constitutive theories were incorporated into
the MARCprogram by meansof an initial stress technique. All of the material
nonlinearity in the constitutive equations is incorporated into an initial load vec-
tor and treated as a pseudo body force in the finite element equilibrium equations.
Becausethe viscoplastic constitutive theories form a "stiff" system of differential
equations, it is necessary to form the incremental constitutive equation appropriate
to the finite element load increment by meansof a subincrement technique.

In the subincrement technique the finite element load increment is split into
a numberof equal subincrements and the viscoplastic constitutive theories are
integrated over the small subincrements to form an accurate representation of the
incremental constitutive equation over the finite element load increment. Integra-
tion over each subincrement was accomplished by meansof an explicit Euler forward
difference method. Provided the subincrements are sufficiently small (so that the
stability level of the forward difference method is not exceeded), the technique
has been found to work efficiently and accurately, even for large finite element
load increments. However, the solution time required for a complete load increment
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in a finite element program is linearly related to the numberof subincrements used
in formulating the initial load vector. There is, therefore, a considerable incen-
tive to use as few subincrements as possible, consistent with the stability of the
differential equations comprising the constitutive theory.

A method for reducing the number of subincrements has been developed for the_
functional theory. The constitutive relations for this theory are written in an
integral form and recursion relations have been developed to integrate the equations
over a subincrement in an efficient, accurate and stable manner. Recursion relations
for the constitutive theory are implicit and a Newton-Raphsontechnique is required
withSn each subincrement to accurately integrate the constitutive theory over the
subincrement. The integral relations are sufficiently accurate and stable to permit
the use of only one subincrement per finite element load increment. In this case
the functional theory is integrated over an increment equal in size to the finite
element load increment. Inaccuracies may arise from large finite element load in-
crements due to the fact that the strain increment vector Asi and the temperature
increment A_ are assumedto be constant over the finite element load increment.
Hence the increments must be sufficiently small to enable the input history to be
accurately modelled by piecewise constant values of APi/At , A_./At and AG/At, where
APois the applied incremental load vector. The fact that Agi_At_is assumedto bei
constant over the increment implies that proportional loading occurs over the incre-
ment. Evidently the load increment must be small enough for this to be a valid
approximation.

The principle of virtual work maybe used to generate the MARCnonlinear
equilibrium equations governing the incremental response of the structure to an
increment of load. In evaluating the nonlinear structural response of a component,
the program assumesthat the load history is divided into a number of incrementally
applied load steps. Each load step is sequentially analyzed as a linear matrix
problem using an appropriate stiffness matrix and load vector. Although each load
step uses linear matrix methods to solve the incremental equilibrium equations, the
incremental equilibrium equations themselves are nonlinear since the load vector
will depend on the displacement increment obtained in the solution of the incre-
mental equilibrium equations.

The principle of virtual work maybe written, for applied external point loads
Pi, or displacements ui, in the form

(5.l)

where the integral extends over the volume, V, of each finite element and the sum-

mation sign extends to all the elements in the structure.
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In Eq. (5.1) the virtual displacement vector 6ui is related to the virtual
strain vector 5ei through the relationship

_E i :BijSu j or 8ET:_u_ B_j, (5.2)

where B.o is the strain-displacement matrix and the superscript T denotes trans-

positio_ Since 6ui is an arbitrary virtual displacement vector, Eqs. (5.1) and

(5.2) may be written in the form

zf

This relation expresses the equilibrium of the structure when the applied load

vector is Pi and the stress vector is o i. If an incremental load AP i is applied

to the structure and the stress vector changes to °i + A°i, the relation expressing

the equilibrium of the structure at the end of the incremental load application

may be written as

_"/v BTj (o-j + Ao-j)dv :1_ + AP i ' (5.4)

Hence, the relation_pressing the equilibrium of the structure during the applica-

tion of the incremental load vector AP i is obtained from Eqs. (5.3) and (5.4) by
subtraction in the form

7 BT. Ao-j dv : AP i D

v I]
(5.5)

The MARC code allows the user to implement very general constitutive relation-

ships into the program by means of the user subroutine HYPELA. Within this sub-

routine the user must specify the values of the elasticity matrix Dij and the

inelastic stress increment vector A_i in the incremental vector constitutive rela-

tionship

Ao- i =Dij(AE j - 8j ct A_) - A _Ji (5.6)

The inelastic stress increment vector A_, is computed in HYPELA from the
i

viscoplastic constitutive relationships summarized in the Appendices.
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In Eq. (5.6) _ denotes the coefficient of thermal expansion and 6. is the
vector Kronecker delta symbol, 3

/I ifO< j_< 3

_j
./

--_Oif3<j_<6 .

(5.7)

4

For the class of nonlinear visoplastic constitutive relationships under con-

sideration in this contract, the incremental inelastic stress vector A_ i depends

in a highly nonlinear manner on the incremental strain vector A_i. Since Am i =

Bij Auj, the incremental inelastic stress vector A_ i depends in a highly nonlinear

manner on the nodal displacement vector increment Auj, so that A_ i = A_ i (Auj).

Substitution of Eq. (5.6) into (5.5) produces the incremental equilibrium

equations for MARC in the form,

_. Kij Auj Ap i + ARi + _ B_j ACj dv + >:. ij _j c,A® dv , (5.8)

where Kij is the elemental elastic stiffness matrix defined by the relation

i TKij-- Bik Dk_ B_j dV. (5.9)
v

The vector AR i is the residual load correction vector or out-of-equiiibrium

force vector from the preceding load increment,

ARi :Pi-_v Bij o'j dV,
(5.1o)

which is added to the current increment in order to restore the structure to

equilibrium. The nonlinearity in the incremental equilibrium relationship, de-

fined in Eq. (5.8), arises because the inelastic stress increment vector &_i

depends nonlinearly on the displacement increment vector Auj. Values of Di_ and

A_j appropriate to the current incremental load step are returned to the maln pro-
gram by subroutine HYPELA and the incremental equilibrium relations in Eq. (5.8)

are solved by successive iterations.

The solution of the incremental equilibrium equations in (5.8) is accomplished

within the MARC code by the following algorithm. At the start of the increment

the user subroutine HYPELA is entered to determine the elasticity matrix Dij and

the incremental inelastic stress vector A_..I On entry to the subroutine the input

consists of the strain increment vector A_, the temperature increment A_, the

time increment At over which the incremental external load vector AP i is applied
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to the structure, and the values of the stress, strain, temperature and viscoplastic
state variables at the beginning of the increment. Since the incremental strain
vector, A_i = B..Au°, can only be accurately determined after the solution to the
incremental equilibrium relationship in Eq. (5.8) has yielded the correct incremental
solution vector Au., the strain increment vector Ae. initially used to generate the3 l
inelastic stress increment vector A_i must be estimated. The initial estimat_ for
Asi is assumedto be the value obtained for Asi in the preceding increment. On exit_
from subroutine HYPELAthe elasticity matrix Dij and the estimated inelastic stress
increment vector A_. are passed into the main program. After the values of Dij and
A_ are obtained fo_ each integration point in the structure, the incremental equi-
librium relationship in Eq. (5.8) is assembled and solved for the incremental node
displacement vector Au_. The incremental strain vector, Aei = B.. Au., is then com-
puted and comparedwith the initial guess for Ag. used to genera_ th_ inelastic

l

incremental stress vector A_j. If this incremental strain vector is equal, within

a user specified tolerance, to the incremental strain vector used to compute AEj

in the assembly phase, the solution is assumed to have converged. Otherwise the

updated strain increment vector, obtained from the solution of the equilibrium re-

lations in Eq. (5.8), is passed into subroutine HYPELA, a new vector, A_j, is com-

puted, and the equilibrium equations resolved to yield an improved value of Au i and

Ae i. The process is repeated until the value of the vector &gi on the assembly

phase is equal, within a user specified tolerance, to the value of the vector As i

on the solution phase. After convergence is achieved, the temperature, stress

vector, strain vector and viscoplastic state variables are updated by adding the

incremental values generated during the current increment to the values of these

variables at the beginning of the increment. The program then passes on to the

next load increment where the process is repeated. A flow chart of the iterative

procedure required to implement the viscoplastic constitutive theories into the MARC

program is shown in Fig. 31.

5.2 Implementation of Functional Theory in MARC

The recursive integration algorithm for the functional theory described in

Appendices 14 and 15 has been introduced into the MARC code by means of the user

subroutine HYPELA. This routine is called at each integration point in each

element and supplies the elasticity matrix Dij and the inelastic stress increment

vector A_j to the main program.

The required header cards are:

SUBROUTINE HYPELA(D,G,E,DE,S,TEMP,DTEMP,NGENS,N,NN,KC,MAT,NDI,

INSHEAR)

DIMENSION D(NGENS,NGENS),G(NGENS),E(NGENS),DE(NGENS),S(NGENS)
DIMENSION TEMP(1),DTE_m(1)

FORTRAN CODING IN APPENDIX 17

RETURN

END
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where

D(NGENS,NGENS)

G(NGENS)

E(NGENS)

p

DE (NGENS)

S(NGENS)

TEMP (i)

TEMP(2)

TEMP (3)

TEMP (4)

through TEMP(9)

• TEMP (10)

through TEMP(15)

TEMP (16)

DTEMP (i)

DTEMP (2)

DTEMP (3)

is the elasticity matrix D.. defined in this

subroutine (output argument ,

is the inelastic stress increment vector A_.

defined in this subroutine (output argument_,

is the mechanical strain ei- _i _(_)[0_(_)/8_ ]d_

at the beginning of the increment (input argument),

is the increment of mechanical strain Ag i - 6i_A_

(input argument),

is the stress oi at the beginning of the increment

(input argument),

is the temperature _ at the beginning of the

increment (input argument),

is the time t at the beginning of the increment

(input argument),

is the cumulative inelastic strain R at the

beginning of the increment (input argument),

are the values of the inelastic strains, c1

through c6, at the beginning of the increment

(input argument),

are the values of the equilibrium stresses _I

through _6 at the beginning of the increment

(input argument),

is the drag stress K at the beginning of the

increment (input argument). On exit from the

subroutine TEMP(16) contains the drag stress K

at the end of the increment (output argument),

is the temperature increment A_ (input argument),

is the time increment At (input argument),

is the increment of cumulative inelastic strain

AR (output argument),
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DTEMP(4)
through DTEMP(9)

DTEMP(10)
through DTEMP(15)

DTEMP(16)

NGENS

N

NN

KC

MAT

NDI

NSHEAR

are the incremental values of the inelastic

strain AcI through Ac6 (output argument),

are the incremental values of the equilibrium
stress A2 through A_6 (output argument),i

is output as zero, since the drag stress K is
updated in TEMP(16),

is the size of the Di. matrix (NGENS= 3 for plane
stress problems, NGEN_= 4 for plane strain and
axisymmetric problems, NGENS= 6 for three dimen-
sional problems) (input argument),

is the finite element number (input argument),

is the integration point number (input argument),

is the layer number in shell or beamproblems
(input argument),

is the material identifier (input argument),

is the numberof direct stress components (NDI = 2
for plane stress problems, NDI = 3 for plane strain,
axisymmetric and three dimensional problems) (input
argument),

is the number of shear components (NSHEAR= i for
plane stress, plane strain and axisymmetric problems,
NSHEAR= 3 for three dimensional problems) (input
argument).

5.3 Notes on Subroutine HYPELA

The values of Di_j and A<i_ in the incremental constitutive relation,

Acri.= Dij(AE j - 8j czA@) - A_i "
(5.11)

are obtained by a subincrement method. Incremental values of the variables

A_, At and (As i - _i_A_) for the current finite element load increment are split
into N equal values, and the constitutive equations are integrated over the N sub-

increments to provide accurate values of Dij and A_ i. Because the recursive scheme
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is accurate and stable, even for large load increments, it is possible to use only
one subincrement per MARCincrement. Figure 32 shows the MARCfinite element pre-
dictions for an axisymmetric problem is which a bar of Hastelloy-X material is
strained at a uniform strain rate in tension. The rounded curve was obtained by
loading to 0.64 percent strain in 64 load increments with one subincrement per MARC
load increment. This corresponds to integrating the recursive algorithm directly
over the samestep size as the finite element step size. Eachof the curves marke@
8, 4, 2 and i, respectively, was obtained by using only one subincrement per MARC
load increment and loading to 0.64 percent strain in 8, 4, 2 and 1 finite element
load increments, respectively. It is evident that the recursive schemeis stable
and accurate even when loading to 0.64 percent strain directly in only one MARC
increment.

The accuracy and stability of the integration algorithm will enable large in-
crements to be used in a nonlinear finite element analysis with a concomitant re-
duction in computer run time. Although the recursive integration algorithm is
implicit, requiring Newton-Raphsoniterations within each subincrement, the number
of iterations required is not large. In the numerical algorithm the initial guess
for the inelastic strain increment in the first subincrement is taken as the devia-
-toric mechanical strain increment. If the material is in the elastic region this
is not a good initial guess. However, if the response is elastic, then after two
iterations it is found that the magnitude of the inelastic strain increment will
generally be less than one percent of the mechanical strain increment and the itera-
tions are stopped. If the material is in the inelastic region the initial guess
for the inelastic strain increment is very well approximated by the deviatoric me-
chanical strain increment and one iteration is sufficient to produce an accurate
result. In successive su_increments the initial guess for the inelastic strain
increment is taken from the preceding subincrement. Although the computer time
required to integrate the constitutive relations over one subincrement is longer
than the time required to integrate the sameequations by meansof an Euler forward
difference method (by about a factor of three or four in general), the recursive
method i@ stable and accurate even when the constitutive equations are integrated
over a large finite element increment with only one subincrement. Moreover, the
forward difference method has a stability limit, which precludes the use of large
subincrements. Backwarddifference and implicit integration methods could also be
used to integrate the constitutive equations over a subincrement. Although these
methods are stable they are not as accurate as the recursive integration algorithm.

MARCsolves the incremental equilibrium Eq. (5.8) by successive iteration.
To see how the equilibrium equation iterations are converging one can pick the
integration point, NPRIN, in element number, NELPR,at which the maximumamount
of nonlinearity is expected. As subroutine HYPELAis entered on the assembly
phase the routine prints out the strain increment vector AE i and the stress incre-

ment vector Ao i at integration point NPRIN in element number NELPR. After the

equilibrium equations have been solved for the incremental displacement vector Aui,

subrou'tine HYPELA is again entered with AE i = B..Au and the incremental vectors
lj "

are printed out on the assembly and solution phase _f every successive iteration of
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the equilibrium equations. In this way the convergence of the solution to the
incremental equilibrium equations can be followed. If no printout of the incre-
mental vectors is required, the variable IPR is set equal to zero in subroutine
HYPELA.

For each subincrement the integral recursive algorithm requires Newton-Raphson
iterations. A test is madewithin the subroutine to determine if the solution
is in the elastic region. If it is in the elastic region and two Newton-Naphson
iterations have been performed, the iterations are stopped and the subroutine goes
on to the next subincrement. Another test is also madeto see if the minimumnumber .
of iterations is met, or until the tolerance on the magnitude of the inelastic strain _
increment vector,

vim. l IARn- ARn_I./ARn_I}_ 0.01 where n is the iteration number,

is met. If the foregoing tolerance on the inelastic strain increment vector is
not met but the maximumnumber of Newton-Raphsoniterations, MAXIT, is exceeded,
the subroutine exits from the iteration loop and proceeds to the next subincrement.

In order to use subroutine HYPELA,nine (9) constants must be defined in the
subroutine, starting at card number forty-four (44). Theseconstants are:

NTP = number of tabulated temperature points in the
DATAstatements,

MAXIT = maximumnumber of Newton-Raphsoniterations
allowed,

MINIT =

NELPR

minimumnumberof Newton-Raphsoniterations
allowed,

element numberfor printout of incremental stress
and strain vectors,

IPR = _ i if stress-strain increment output is required,
0 if stress-strain increment output is not required,

NPRIN = integration point numberfor printout of
incremental stress and strain vectors,

NSPLIT = numberof subincrements per MARCincrement,

SFTEMP = stress free temperature; for isothermal calculations
this is the isothermal temperature,

TDIF = temperature difference in the DATAstatement in
which the material constants are tabulated.
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The material constants for the functional theory, viz.

@

_, _, _, n, m, nl, n2, n3, n4, n5, n6, n7, KI, K 2 in Appendix i,

depend on temperature. For Hastelloy-X these constants have been determined at

six temperatures ranging from 427°C (800°F) to 982°C (1800°F) in III°C (200°F)

intervals. These material constants are entered into the MARC subroutine HYPELA i

in DATA statements. At a specified temperature, the material constants are found

by a linear interpolation of the constants in the DATA statements. If the tempera-

ture lies outside of the tabulated values, a linear extrapolation, based on the

last two entries in the DATA statement table, is performed. The material constant

n i_ not entered directly into the DATA statements. Instead, values of its

reciprocal, n-1, are tabulated. At a given temperature n-I is then found by linear

interpolation in the table and n is determined as its reciprocal.

If the material constant n is determined by linear interpolation of its

tabulated values, unreasonable results are obtained for the material response.

Figure 33 shows the steady state hysteresis loops for Hastelloy-X at 704°C (1300°F)

based on a linear interpolation of the tabulated material constant n at 648°C

(1200°F) and 760°C (1400°F). This figure shows that the prediction of the 704°C

(1300°F) response, based on the linear interpolation of n, lies outside of the range

of the 640°C (1200°F) and 760°C (1400°F) responses. The constants at 648°C (1200°F)

and 760°C (1400°F) were obtained from the experimental data and the theoretical

predictions at these temperatures in Fig. 33 provide a reasonable correlation with

the experimental data.

The tabulated material constants are obtained from the asymptotic response of

the material at strain values large enough for the stress to obtain a saturated

limit. In order to obtain a realistic response at a given temperature, the material

constants should be obtained by a linear interpolation of the asymptotic response

of the material. If oI and 02 denote the theoretical asymptotic stress values cor-

responding to a strain rate _ at temperatures G 1 and _2' where the strain value e is

large enough for the equilibrium stress to reach its maximum rate-independent value,

, then
max

Iln(®l)
_I =f_mox(@l )+ K (_i)@ (5.12)

and

°'Z : Q'me x (OZ) + K(_2 )_ I/n(®2)

From these equations it is clear that in order to obtain a realistic asymptotic

response for _ at a temperature G between G 1 and _2' a linear interpolation of

_max' K and n -I is appropriate. Numerical calculations show that a linear inter-

polation of n is inappropriate, and linear interpolation of n-I is therefore per-

formed in the HYPELA subroutine.
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5.4 Input Data Required by MARC

A listing of the data cards required for the thermomechanical loading history
described in Section 4.3 is given in Appendix 16. This problem consists of the
thermomechanical loading of a bar of Hastelloy-X material in which the bar is
subjected to the mechanical strain and temperature histories depicted in Figs. 25 -
27. Since only mechanical strain is being imposed on the bar, this condition c_n
be simulated by setting the coefficient of thermal expansion _ equal to zero and
imposing a given total strain history at the ends of the bar. A four element
axisymmetric problem is depicted in Fig. 34. Nodesone, two and three are given
incremental displacements which follow the total strain history of Fig. 26, whilst
e_Ghintegration point of each element is given incremental temperature variations
which follow the temperature history of Figure 25.

Twocards are required before the ENDcard (Card 10 of Appendix 16). These
are :

HYPOELAS
STATEVARS 16

A uniform temperature increment over the structure, together with an appro-
priate time increment, can be specified with the following cards;

THERMALLOADS
I,
5.0, 2.0
BLANKCARD

In the above sequence of cards, the first state variable increment of 5.0 refers
to the uniform temperature increment A_ = 5°F over the structure. The second state
variable increment of 2.0 refers to a time increment of At = 2 seconds. The re-
mainder of the card and the following BLANKcard set the remaining fourteen (14)
state variable increments to zero. Since the STATEVARScard (Card number 7 of
Appendix 16) defines sixteen (16) state variables, MARCexpects this numberas
input. However, only the first two state variables, A_ and At, are required as
input by HYPELA,so that the remaining (14) state variable increments are set to
zero. The remaining (14) state variable increments are defined within subroutine
HYPELA.

If a nonuniform temperature over the structure is required (the usual case),
the temperature increments and time increment must be set in user subroutine CREDE.
This can be accomplished with the following header cards:

SUBROUTINECREDE(DTDL,M,NSTRES,NEQST,NSTATS)
DIMENSIONDTDL(NSTATS,NEQST,NSTRES)
COMMON/FAR/DUM,L

N = (where N = numberof integration points in element numberM)
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DO2 !I = i, N

DTDL(I,I,II)

DTDL(2,I,II)

2 CONTINUE
RETURN
END

temperature increment at integration point II

time increment (can be madea function of load
increment numberL)
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6.0 TASKIV - COMPARISONANDEVALUATIONOFCONSTITUTIVETHEORIES

6.1 Determination of Material Constants

Material constants for each of the three candidate theories were determined
from the experimental hysteresis data presented in Figs. 11-16 and from the satu-
rated value of the equilibrium stress at a constant strain rate magnitude of
3.66 x 10-4 sec-I at a temperature of 982°C (1800°F). Values of the constants
for the functional theory, Miller's theory, and Krieg, Swearengenand Rohde's
theory are presented in Tables 5 - 7.

The constant A3 in Krieg, Swearengenand Rohde's theory has been assumedto
have the value A3 = 10-12 for all temperatures. The thermal recovery term may
then be approximated in the form

recovery= A 2 A:3 A-_-.0,ij Q,pq ,O.pq J-_-3 "0"rs "O'rs ' (6.1)

so that in uniaxial loading the recovery term is proportional to the fourth power

of the equilibrium stress. If A3 were larger in value, the exponential term would

grow very rapidly once the equilibrium stress reached a certain value, as shown in

Fig. 9, and the resulting stress-strain curves would exhibit a tri-linear behavior.

The small value of A3 and the resulting dependence of the static thermal recovery

term on _4 mitigates the severity of this tri-linear behavior.

The constants (n + n_) in the functional theory, HI in Miller's theory and
±

A 1 in Krieg, Swearengen an_ Rohde's theory determine the rapidity of the approach

of the equilibrium stress to its saturated value. For large values of thesecon-

stants the equilibrium stress grows so rapidly that it virtually saturates in the

"elaStic" region and the stress-strain curve exhibits the "square" behavior de-

picted in Fig. 35. For intermediate values the equilibrium stress approaches its

saturated value less rapidly and the stress-strain curve exhibits a rounded appear-

ance. For very small values of these constants, the equilibrium stress grows very

slowly. The asymptotic stress value, when _ _ 0, is given by the functional theory

and by Krieg, Swearengen and Rohde's theory as

• I/n
o'_K( , (6.2)

and by Miller's theory as

cr=K {sinh -I [ @ _,/n }2/3
(6.3)
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TABLE

Material Constants for

5

Functional Theory

Material 982°C 871°C 760°C 648°C 537°C 427°C
Constant 1800°F 1600°F 1400°F 1200°F 1000°F 800°F

II.5E6 15.4E6 17.8E6 18.1E6 17.2E6 17.8E6

4.9E6 6.9E6 8.4E6 9.0E6 9.0E6 9.8E6

K1 59292 91505 251886 95631 75631 50931

K 2 0 0 0 0 0 0

-i
n .233 .195 .244 .079 .059 .059

m 1.16 1.16 1.16 1.16 1.16 1.16

nI 0 0 0 0 0 0

n2 1.0E6 5.0E6 2.0E7 1.5E7 6.0E7 30.0E7

n3 312 673 1179 781 i000 8000

n4 0 0 0 0 0 0

n5 0 0 0 0 0 0

n 6 2.73E-3 8.98E-4 0 0 0 0

n 7 0 0 0 0 0 0

O

-1200 -1434 -2000 -2000 0 0

_6



TABLE 6

Material Constants for Miller's Theory

K
O

n

B

= 8000

= 1.598

= 1.0293E14

H _ = 1.0E7
i

A = 9.305E-4
i

H2 = I00

C2 = 50000

A = 5.9425E-12
2

Q* = 104600

T = 1588°K
m

k = 1.9859

0' = exp {- Q*/kT I for T > .6T- m

e' = exp .6kT in I +-- for T < .6T
m T m

where T is the temperature in degrees Kelvin. The Lame constants % and

are as given in Table 5.

47



TABLE7

Material Constants for Krieg, Swearengenand Rohde's Theory

Material 982°C 871°C 760°C 648°C 537°C 427°C
Constant 1800°F 1600°F 1400°F 1200°F 1000°F 800OF

II.5E6 15.4E6 17.8E6 18.1E6 17.2E6 17.8E6

4.9E6 6.9E6 8.4E6 9.0E6 9.0E6 9.8E6

K 59292 91505 251886 95631 75631 50931
"'O

n-I .223 .195 .244 .079 .059 .059

A1 1.0E6 5.0E6 2.0E7 1.5E7 6.0E7 30.0E7

A 243 14.96 1.54 .66 1.79E-3 .59
2

A 3 1.0E-12 1.0E-12 1.0E-12 1.0E-12 I.OE-12 1.0E-12

A 4 0 0 0 0 0 0

A 5 0 0 0 0 0 0
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Thus, for very small values of n2 the theories predict a viscoelastic material
behavior and the stress-strain curve again exhibits a relatively "square" behavior.
Numerical results for the functional theory are exhibited in Figs. 36 and 37 when
nI = 0 and n2 = 0.8E7 and n2 = 5.0E7, respectively. The "square" behavior for
large values on n2 is apparent in Fig. 37. In changing the value of n2 from 0.8E7
to 5.0E7, it is necessary to adjust the material constant n3 in the dynamic recovery
term in order to obtain the samesaturated value of the equilibrium stress.

6.2 Strain Rate Behavior

_Figures 38 - 58 depict the steady state hysteresis loops obtained with the func-
tional theory, Miller's theory, and Krieg, Swearengenand Rohde's theory at tempera-
tures ranging from 648°C (1200°F) to 982°C (1800°F) in 38°C (100°F) intervals.
These loops represent the predicted behavior of the material for triangular strain
histories in which the magnitudes of the strain rates are 3.9 x 10-3 sec-I, 3.7 x 1074
sec-I, 3.7 x 10-5 sec-I, i.i x 10-5 sec-I and 1.2 x 10-6 sec-I and in which the
strain amplitude is + 0.6 percent. Tri-linear material behavior is observed in
Miller's theory in the temperature range extending from 648°C (1200°F) to 816°C
(1500°F), whilst the functional theory and Krieg, Swearengenand Rohde's theory pro-
duce rounder stress-strain hysteresis loops.

Figures 59 and 60 facilitate a comparison between the functional theory and
the experimental hysteresis loops at 871°C (1600°F) and 982°C (1800°F). The peak
stresses in the loops are well predicted, but at the lower strain rates the theoret-
ical predictions of the stress-strain behavior are too "square". This "squareness"
at the lower strain rates is commonto each of the theories and arises from the fact
that the equilibrium stress saturates to a smaller value at low strain rates due
to static thermal recovery. For a given hardening rate of the equilibrium stress,
the saturated value is achieved more rapidly at low strain rates, and this produces
the "square" stress-strain loops. The theoretical loops at low strain rates could
be maderounder by assuming that the constants which govern the hardenin_ of the
equilibrium stress, viz. (nI + n2) , HI and AI, decrease in magnitude in proportion
to the decrease in the saturated value of the equilibrium stress. This is equiva-
lent to the assumption that these hardening constants depend on the magnitude of
the inelastic strain rate, &ij"

Figures 61 and 62 show the results of a MARCaxisymmetric finite element
analysis of a cylindrical specimen of Hastelloy-X using the functional theory.
This specimenwas cycled under fully reversed strain controlled conditions with a
strain amplitude of +0.6 percent at 982°C (1800°F) at a constant strain rate magni-
tude of i.i x 10-5 sec-I. The MARCplots represent loading the specimen to +0.6 per_
cent strain, unloading and compressing the specimen to -0.6 percent strain, and
finally reloading the specimen to +0.6 percent strain. In Fig. 61 sixty (60) MARC
increments were used to load from 0 to +0.6 percent strain, one hundred and twenty
(120) MARCincrements to load from +0.6 to -0.6 percent strain, and one hundred and
twenty (120) MARCincrements to reload from -0.6 percent to +0.6 percent strain,

49



with one subincrement per MARCincrement in subroutine HYPELA. The reason for
using a large numberof increments to traverse the hysteresis cycle was simply
to obtaingood definition of the stress-strain hysteresis loops in the plotted
output from MARC. Figure 62 shows the samehysteresis loop in which three (3)
MARCincrements were used to load the specimen from 0 to +0.6 percent strain,
six (6) MARCincrements to unload from +0.6 percent to -0.6 percent strain, and
six (6) MARCincrements to reload from -0.6 percent to +0.6 percent strain.
Thirty (30) subincrements were used per MARCincrement in subroutine HYPELA. A
comparison of Figs. 61 and 62 shows that even with the large MARCincrements used
in Fig. 62 the stress at the end of the MARCincrement lies on the stress-strain
hysteresis loop. Experience with the algorithm shows that even if only one sub-
increment per _IARCincrement is used, the stress at the end of the MARCincrement
li_es on the stress-strain hysteresis loop.

6.3 Creep and Relaxation Behavior

A comparison of experimental and theoretical creep predictions using the
functional theory is shownin Figs. 17 and 18. The experimental results were gen-
erated by traversing a steady state hysteresis loop carried out under fully reversed
strain controlled conditions at a strain amplitude of +0.6 percent at a constant
strain rate magnitude of 3.7 x 10-4 sec-I at temperatures of 871°C (1600°F) and
982°C (1800°F). At various points on both the tension going and compression going
loading branches of the hysteresis loops, the stress was held at a constant value
and the creep results were recorded on a strip chart. After each creep test was
completed the material was cycled again at +0.6 percent strain amplitude at a
strain rate magnitude Of 3.7 x 10-4 sec-I. After a few cycles the material will
cycle around the original steady state hysteresis loop and the effects of the pre-
vious creep tests are wiped from the materials memory.

The functional theory was integrated around the hysteresis loops at 871°C
(1600°F) and 982°C (1800°F). At various points on the hysteresis loops the stress
was held at a constant value and the resulting creep strain produced by the vis-
coplastic theory was computed. The dots in Figs. 17 and 18 represent the predic-
tions of the functional theory. Since the theoretical hysteresis loops are too
"square" in comparison with the experimental curves, the initial strain at which
creep commencesdiffers in the experimental and theoretical creep curves. To avoid
this discrepancy the theoretical and experimental creep curves in Figs. 17 and 18
have been normalized to a zero initial strain.

According to the theoretical formulation, steady state creep is indistinguish-
able from the stress-strain behavior at large strain values on a hysteresis loop
executed at a constant strain rate, since at large strain values the stress satu-
rates to a constant value. This conclusion is supported by the close agreement
between the theoretical and experimental creep behavior, since the material constants
were determined from the hysteresis loops and not from the creep curves. A differ-
ence in the compressive and tensile hysteresis behavior found in the stress-strain
loops is also evident in the creep behavior, the material being stronger in

50



O

compression than in tension. The introduction of the constant, _, into the

functional theory to account for the different tensile and compressive hysteresis

behavior also accounts for the difference between the tensile and compressive

creep behavior shown in Fig. 18.

Figure 63 depicts the creep response obtained with Miller's theory at 1600°F.

Since Miller's theory predicts equal response in tension and compression, only

the results for the compressive calculations are given. At low stress levels the

predictions are not as good as the functional theory predictions. However, a

reasonable creep prediction is obtained at the highest compressive stress level

of -197 _a (-28,600 psi). These creep predictions have been made at a temperature

where Miller's theory should be at its most accurate. The accuracy obtained at

other temperatures will decrease because the material constants provide a best fit

at 1600°F and give considerable scatter in attempting to correlate the behavior at

other temperatures.

The creep behavior obtained with Krieg, Swearengen and Rohde's theory at 871°C

(1600°F) and 982°C (1800°F) is very similar to the creep behavior of the functional

theory in the case of tensile creep. It predicts equal tensile and compressive

creep behavior.

Stress relaxation data was obtained at temperatures varying from 648°C (1200°F)

to 982°C (1800°F). In the tests stress relaxation was initiated at a zero strain

value on the compressive loading branches of three steady state hysteresis loops

carried out at constant strain rate magnitudes of 3.9 x 10-3 sec -1, 3.7 x 10 -4 sec -I_

and 3.7 x 10 -5 sec -I with strain amplitudes of +0.6 percent. After each stress

relaxation test the material was cycled several times around the steady state

hysteresis loops to erase the preceding hysteresis and relaxation tests from the

memory of the material.

Since the relaxation data was not used in the determination of the material

constants, very little of the experimental relaxation data has been compared with

the theoretical predictions to date.

In Figs. 20 - 22 the dots represent calculations of the stress relaxation

obtained by integrating the functional theory around steady state hysteresis loops

executed at strain rates of 3.9 x 10 -3 sec -1, 3.7 x 10 -4 sec -I and 3.7 x 10 -5 sec -l

under strain controlled conditions with strain amplitudes of +0.6 percent at 982°C

(1800°F). At zero strain values on the compressive portions of these loops the

strain was held at zero and the resulting stress relaxation produced by the theory

was computed. The agreement between the theoretical predictions and the experimental

relaxation tests show satisfactory agreement.

6.4 Thermomechanical Behavior

The thermomechanical loops predicted by the functional theory, Miller's theory

and Krieg, Swearengen and Rohde's theory are displayed in Figs. 64 - 66. These

hysteresis loops are produced by integrating the theories over the temperature and

mechanical strain histories depicted in Figs. 25 - 27.
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From Fig. 64 it is evident that the functional theory prediction exhibits a
relatively small amount of stress relaxation at the maximumtemperature of 954°C
(1750°F) in Fig. 25. Note from Fig. 26 that the maximumtemperature hold period
does not correspond to the maximumcompressive mechanical strain. In fact the
strain is held constant on the unloading branch of the thermomechanical hysteresis
loop. The hysteresis loops show a progressive overall stress relaxation in the
positive stress direction and the loops stabilize after about three cycles in
conformity with experimental observations.

Figure 65 shows the thermomechanical loop predicted by Miller's theory. The
theory predicts a large amount of stress relaxation at the maximumtemperature hold
period and the loop stabilizes in one cycle. In the tensile portion of the thermo-
mechanical loop the theory exhibits an elastic behavior and does not predict the
tensile yield which is observed experimentally in Fig. 24.

Figure 66 shows the thermomechanical loop predicted by Krieg, Swearengenand
Rohde's theory. The theory predicts a relatively small amount of stress relaxation
at the maximumtemperature hold period and the loop stabilizes in one cycle. In
the tensile portion of the thermomechanical loop the theory exhibits tensile yield-
ing with a slight stress dip at the top of the tensile portion of the loo k.

By changing the material constants by a small amount in the functional theory
and in Krieg, Swearengenand Rohde's theory, it is possible to produce pronounced
stress dips at the top of the tensile portion of the thermomechanical loop similar
to that predicted in Fig. 69. This predicted dip in the stress response at the max-
imumtensile position in the thermomechanical hysteresis loop maybe due to two
factors. First, the strain rate at the maximumtensile stress is very small and the
material may be relaxing. Experimentally the material exhibits a relatively rate-
insensitive response at the temperature corresponding to the maximumtensile stress,
so that experimental relaxation should not be, and is not, observed. However, the
theoretical models cannot reproduce a rate-insensitive response, so that the
theoretical models respond to a small strain rate by producing a stress relaxation.
The amount and rate of relaxation depend on how far the stress at the maximumtensile
position exceeds the equilibrium stress. Secondly, thetheoretical models predict
that during elastic deformation the equilibrium stress remains constant. During
the initial compression phase of the cycle, the equilibrium stress is negative. At
the maximumtemperature of 954°C (1750°F) the hysteresis response starts to elastic-
ally unload. As the stress increases elastically into the tensile region of the
hysteresis loop, the equilibrium stress remains constant at its maximumnegative
value, since the equilibrium stress state variable changes only with inelastic deforma-
tion. However, if the equilibrium stress increased due to changes in temperature
as the stress increases elastically, the difference between the actual stress oij
and the equilibrium stress _ij would remain relatively small and the inelastic
strain rate expression cij' which depends on the difference between oij and _..,ij
would provide a gradual growth in the inelastic strain, similar to that observed
in an isothermal hysteresis loop. But if _ij "sticks" at its maximumnegative value
during an elastic excursion in which the stress oij is increasing, the inelastic
strain will grow very rapidly. This rapid growth in inelastic strain will also
produce a stress dip in the hysteresis loop.
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The equation governing the growth of the equilibrium stress _ij in the
functional theory maybe written in the form

aij(t) : "_ u(t)+ n' (® (t))cij(t) + n2 (® (t)) f'te -{G(t)-G(()}*'O c)Cijc).___,d_ . (6.4)

On differentiation with respect to time, t, the following relation is obtained:

Onl (G I 8n2 _)(_ij-_ij nlcij). (6.5)_ij:(nl+n2)cij +_ _cij- n2 a® - ,

If the material constant n 2 (_(t)) appears inside the integral in the form n2 (G(_))

the terms involving _ in the preceding expression do not appear. However, with the

terms, the equilibrium stress can grow with temperature during an elastic excur-

sion (in which cij = 0 and G = 0) according to the relationship

"_'ij: anL I 8n2 00® _ cij + n2 8® @ ('_iJ-9"ij-nlCij)" (6.6)

In the FORTRAN subroutine HYPELA the functional theory has been implemented

with the equilibrium stress having the form

acii t -{Gin- G_')} acii
,O,ij (t)--,_, i j(t)+_o tn i (_)(_')) _ d_ +_ n2(L_(O) e ct---_ d_,

(6.7)

so that the _ terms will not be present in the corresponding differential equation.

This form of the equilibrium stress equation prohibits the equilibrium stress from

changing during elastic excursions and was used in the computation of the thermo-

mechanical loop in Fig. 64. It is thought that the expression in (6.4), which has

been written as part of the functional theory in Appendix i, will give a better

representation of the thermomechanical hysteresis response. Future investigations

will implement Eq. (6.4).

Stress dip anomalies due to relaxation at the maximum tensile position in the

thermomechanical hysteresis loop can also be avoided if the instantaneous response

of the material is assumed to be inelastic. At present the instantaneous response

is elastic. If the instantaneous response is given by oij = Eij and the equilibrium

response by aij = _ij' then by adjusting the growth laws for Eij and gij so that

at any time their magnitudes in the inelastic region are close to one another

(_ij _ _J')' the response can be made rate-insensitive at lower temperatures and
the relaxation in the tensile poriton of the thermomechanical hysteresis loop can be

avoided.
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Based on the favorable comparison of the experimental and theoretical hysteresis
loops, together with good short time creep predictions, at temperatures ranging from
800°F (427°C) to 1800°F (982°C), the functional theory was chosen to perform the
cumbustor liner rig analysis.

6.5 CombustorLiner Rig Analysis

A three dimensional inelastic finite element analysis of the induction rig
specimendescribed in Section 4.4 was undertaken in Ref. [8] under contract NAS3-21836
with the NASA-LewisResearch Center. This analysis was conducted with constitutive
modelscurrently available in the MARCprogram. The analysis has been repeated in
the present contract with the functional viscoplastic theory.

A three dimensional finite element model of the cylindrical louvered induction
rig specimen is shownin Fig. 67. The model contains an included angle of 0.577°
which represents the angular distance between the radial symmetryplanes of two
adjacent cooling holes. This small model size was selected because of the circum-
ferentially uniform temperatures in the louver lip region and to minimize computer
run time.

As shown, the model consists of thirty (30) finite elements. Twenty-one (21)
of the elements are the twenty (20) node isoparametric element with reduced inte-
gration using eight (8) Gaussintegration points (MARCelement #57). Since it is
known that somereduced integration point elements are unreliable if distorted shapes
are used, the full twenty seven (27) integration point element (MARCelement #21)
was used around the cooling holes. Selection of the reduced integration point ele-
ments was based on initial estimates of the savings in computer run time over the
full integration point element, and to minimize the required spatial temperature
interpolation between the heat transfer and structural analysis meshes.

The effect of the complete shell structure was simulated by the appropriate
boundary conditions. Along the radial plane AC and BDin Fig. 67, only radial dis-
placements were permitted. This was accomplished by use of the TRANSFORMATIONoption
in MARCto transform the global degrees of freedom in these planes to the local
coordinate systems. Along the planes AB and CDthe effect of the fore and aft
louvers was simulated by requiring that the radial displacements, Ur, of nodal points
on each plane were related by the equation

= x RAB
RCD '

(6.8)

where RAB is the original radial coordinate on AB and RCD is the original radial

coordinate on CD. An additional condition equated the axial slopes along these

planes. These conditions were prescribed by means of the user subroutine UFORMS.

The fact that a series of louvers may be represented by this technique had been

demonstrated in previous elastic shell of revolution analyses.
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Numerical accuracy problems associated with the small included angle were
investigated with a simple two element model having an included angle equal to
that of the louver model. An initial analysis with this model produced stresses
on the order of 69 _a (I0000 psi) whenrun in an isothermal condition in which
the stresses should have been zero. In this model the radial displacements, due
to the free thermal growth, were serveral orders of magnitude larger than the
circumferential displacements. Circumferential (hoop) stresses were produced as a
result of numerical round-off during the single precision solution on the IBM 370/
3033 computer. Using a double precision version of MARCsignificantly reduced the
round-off error to produce an acceptable isothermal solution.

The thermal increment file generated in Ref. [8] was used to drive the struc-
tural analysis. A small mechanical pressure load was applied initially followed by
sixty-one (61) thermal load increments per hysteresis cycle. Twohysteresis cycles
were completed in the analysis. The transient temperature at the integration point
closest to the end of the louver lip (the fatigue critical location) is shownin
Fig. 68. Figure 69 depicts the hoop stress vs. hoop mechanical strain hysteresis
loop at the corresponding integration point for two thermal loading cycles consist-
ing of one hundred and twenty-one (121) MARCthermal load increments. Thirty (30)
subincrements per MARCincrement were used to ensure an accurate description of the
viscoplastic behavior in the subroutine HYPELA. With the new integration algorithm
the two thermal loading cycles could have been traversed with much less than one
hundred and twenty-one (121) MARCthermal load increments; this number of increments
was used, however, because of the availability of the thermal load increment file
from the analysis conducted in Ref. [8].

The thermomechanical response shownin Fig. 69 exhibits an apparent ratchetting
in the negative strain direction. This ratchetting is believed to be due to the
elastic behavior observed in the low temperature tensile portion of the thermome-
chanical hysteresis loop. A stress dip phenomenonis also observed at the maximum
tensile stress obtained in the loop. Neither the excessive elastic behavior, nor
the stress dip phenomenon,is observed in the experimental thermomechanical response
shownin Fig. 24. Note, however, that no ratchetting is observed in the experimental
thermomechanical response in Fig. 24 because the maximummechanical strain amplitude
is kept constant at -0.45 percent.

The ratchetting of the thermomechanical hysteresis loop with its associated
tensile elastic response and stress dip phenomenon,coupled with the generally
poor predictions of the thermomechanical response produced by the viscoplastic
constitutive theories, points to a need for further research on the thermomechanical
behavior of Hastelloy-X and other high temperature structural materials. In general,
the isothermal predictions of the theories with respect to strain rate, creep and
relaxation behavior, is good. Further analysis, along the lines suggested in
Section 6.4, is required to improve the thermomechanical predictions.
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7.0 DISCUSSION OF RESULTS AND CONCLUSIONS

The unified viscoplastic constitutive theories of Walker (Appendix i),

Miller (Appendix 4), and Krieg, Swearengen & Rohde (Appendix 8), were installed

for use in the MARC nonlinear finite element program by means of an initial s_ress

method. An experimental program on Hastelloy-X material supplied the material

constants for each of the theories at temperatures varying between 800°F (427°C)

and 1800°F (982°C). General conclusions and observations concerning the work per-

formed in this contract are:

1.. The unified viscoplastic theories are represented by systems of "stiff"

differential equations. In order to integrate such theories over the finite

element load increment, it is necessary to split the finite element increment

into a number of subincrements and integrate the constitutive theories over

the subincrements. By using a large number of subincrements the constitutive

theories can be integrated accurately over arbitrarily large finite element

load increments. The size of the finite element load increments is limited

only by the fact that proportional loading (strain increments are proportional

during the finite element load increment) is assumed to occur over the incre-

ment. Consequently, the finite element load increments must be small enough

to ensure that the strain history at any point in the structure can be repre-

sented by increments of proportional loading. The strain history, at any point

in the structure, which in general is nonproportional, is then represented by a

series of proportional strain increments in which the constant of proportionality

changes from inc_ement to increment.

The solution time required for a complete load increment in a finite element

program is linearly related to the number of subincrements used in the inte-

gration of the constitutive equations. A reduction in the number of subincre-

ments can be effected if the viscoplastic constitutive theories are written in

,an integral form and the theories are integrated over the subincrements by

means of a suitable recursive algorithm. By means of the recursive algorithm

developed in this contract the number of subincrements can be reduced to one. This

corresponds to integrating the constitutive equations directly over the finite

element load increment. Because the recursive algorithm is stable and accurate,

even when the integration increment is large, the computer time required to

integrate these "stiff" viscoplastic formulations can be substantially reduced.

2. The viscoplastic constitutive theories examined give adequate accuracy in

predicting the rate-dependent response of Hastelloy-X under uniaxial isothermal

loading conditions. It appears that tabulating the material constants as a

function of temperature provides improved accuracy over that obtained by assum-

ing that strain rate effects and temperature effects are coupled by the Arrhenius

type of exponential relation used in Miller's theory. Care must be taken, when

tabulating the material constants as a function of temperature, to ensure that

a reasonable asymptotic stress-strain response is obtained. Some of the material
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constants, such as the inelastic strain rate exponent, n, control the magnitude

of the computed stress at large strain values. The best way to obtain an inter-

polated value of n is to interpolate the asymptotic stress-strain response and

then to determine the value of n from the interpolated response. In this con-

tract the reciprocal, n -1, is interpolated in the temperature tables, since this

gives an adequate representation of the asymptotic stress-strain response a_ a

given temperature.

Relatively poor accuracy is obtained when the viscoplastic theories are used to

predict the uniaxial thermomechanical behavior of Hastelloy-X. It appears that

improved accuracy can be obtained by assuming that the state variables can change 1

-:with temperature during "elastic" excursions and by assuming that the instantan-

eous material response is inelastic, rather than elastic.

The computer time required for the three dimensional structural analysis of the

combustor liner induction rig test specimen was about the same as that required

by the conventional yield surface plasticity theories available within the MARC

program. This structural analysis was performed by integrating the functional

theory over thirty (30) subincrements for every MARC load increment. Since the

number of subincrements can be decreased by a factor of thirty and the number of

MARC load increments can also be substantially reduced compared with the number

of increments required to preserve accuracy and stability with the conventional

yield surface plasticity theories, the new integration algorithm will cut the

cost of nonlinear finite element analyses substantially over the cost required

for conventional plasticity analyses.
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8.0 RECOMMENDATIONS

This contract has provided an enhancedcapability for analyzing structural
componentswhich operate under cyclic elevated temperature conditions. Further
work is necessary in order to:

.

o

Improve the uniaxial thermomechanical response of the constitutive theories.

Improvements can be effected by: (a) allowing the state variables to change

with temperature during "elastic" excursions in a thermomechanical simulation;

and (b) by allowing the instantaneous response, _.. = _ij, to be inelastic bylj

specifying suitable growth laws for the variable Eij"

Verify, and modify if necessary, the constitutive response under multiaxial

loading conditions.

3. Apply the constitutive theories to other materials, both isotropic and aniso-

tropic.
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Strain Rate of + 1.36 x 10 -3 sec "1 with a Strain Amplitude of + 0.4%

69 81--9--103--3



0

LINEAR GROWTH OF

5} DUE TO HARDENING

//_- RAPID SATURATION OF []
OCCURS WHEN STATIC THERMAL

RECOVERY BALANCES THE LINEAR

_" WORK HARDENING GROWTH

/
SMALL GROWTH OF _} /

IN THE '.'ELASTIC" f

REGION /

/
/

._.J

Figure 9. Characteristic Tri-Linear Stress-Strain Behavior Exhibited by those Theories
(Miller; Hart; Krieg, Swearengen and Rohde) in which the Equilibrium
Stress Grows Linearly with Inelastic Strain and Reaches a Saturation

Limit in which Hardening and Static Thermal Recovery are Balanced

70
81--9--103-5



ORIGINAL PAGE"

BLACK AND WHITE PNOTOGB-----&ff,R

c

E
,m

0

Q.
09
A

0

C
0
o
t-

"a

0

•m
ii

7t I Reproduced frombest available copy.

81--9--103--36



STRAIN AMPLITUDE IS +_1 PERCENT

a(psi)

1 ksi=6.9 MPa
8602; -

7168_ -

5734_

43011

28674

I
0 0.2 0.8 e (%)

2 x 102 sec -1

37 X 10-3 sec -1

sec -1

;7 x 10-5 sec

Figure 11. Experimental Steady State Hysteresis Loops for Hastelloy-X Showing

Inverse Strain Rate Sensitivity at 800°F (427°C)

72

80--8--82--1



STRAIN AMPLITUDE IS _+1 PERCENT

STRESS (psi)

86022 !

1 ksi = 6.9 MPa

28674

14337 -

STRAIN (%)

i.67 x 10 3 sec -1

6.67 x 10 -4 sec 1

6.67 x 10 -5 sec -1

Figure 12. Experimental Steady State Hysteresis Loops for Hastelloy-X Showing

Inverse Strain Rate Sensitivity at 1000°F (538°C)

73

80--8--82--2



rJ')

CO
CO
LU
rT
I--

72,172

57,737

43,303

28,869

14,434

0

-14,434

-28,869

-43,303

-57,737

-72,172

-0.8

1 ksi=6.9 MPa

3.7 x 10 -5 s-1

V

i I I i I I

-0.6 -0:4 -0.2 0 0.2 0.4 0.6

STRAIN (%)

0.8

Figure 13. Experimental Steady State Hysteresis Loops for

Hastelloy-X at 649 °C (1200 °F)

81--9--103--32

74



G_

O3

£0

H

T--

09

v

CO
09
UJ
rr

O3

1 O0

50

0

r

-1 O0

3.7x104s -1

3.7x10-Ss 1

1.1x10-5s -1

1,2xlO-6s -1

0

STRAIN (%)

Figure 14, Experimental Steady State Hysteresis Loops for

Hastelloy-X at 760°C (1400°F)

75

81-9--103--31



09
CO
UJ
cr
F-
CO

4301 3

35844

28675

21506

14338

7169

0

-7169

-14338

-215O6

-28675

-35844

-43013

1 ksi =6.9 MPa

3.9x 10-3 s-1

3.7x 10-4 s-1

3.7x10-5s -1

1.1xlO-5s -1

1.2x10-6s -1

-I I
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

STRAIN(%)

I I I

Figure 15. Experimental Hysteresis Loops for Hastelloy-X at 871 °C (1600°F)

76

8o-11-72-2



STRESS (psi) 1 ksi=6.9 MPa

32400

28800

25200

21600
o

19212

1.25x10 -6 s -1

1.115x10-5 s-1

3.704x10 -5 s-1

3.664x10 -4 s -1

3.866xl 0-3

14400

10800

7200

3600

0%
I I

0.2% 0.4%

12186

,6595

t4445

,1864

0.6%
PERCENT

STRAI N

Figure 16. Experimental Hysteresis Loops for Hastelloy-X at

1800°F at +0.6% Strain Amplitude

77

80--8--82--3



1.4

• CALCULATION (FUNCTIONAL THEORY)

EXPERIMENT

04

1,2

1.0

0

I
10

1 ksi =6.9 MPa

+ 26,200 psi + 21,500 psi

I I I I I I I
15 20 25 30 35 40 45

TIME IN seconds

+ 14,300 psi

+ 7,200 psi

7,200 psi

- 14,300 psi

- 28,600 psi

-21,500 psi

I
50 55

Figure 17. Creep Response of Hastelloy-X at 1600°F

78

80--11 --72--1



EXPERIMENT
• CALCULATION (FUNCTIONAL THEORY)

o_
v

Z

<
rr

03

r_
ILl
UJ
n-
O

-1.2

-1.6

+119 MPa

+ 99 MPa

• + 74 MPa

• -124 MPa

-136 MPa

00 •0 +49 MPa

-25 MPa

MPa

-74 MPa

-99 MPa

0 4 8 12 16 20 24

TIME IN seconds

Figure 18. Theoretical and Experimental Creep Behavior for Hastelloy-X at 982°C

(1800°F) Starting from Various Points on the Tensile and Compressive

Loading Branches of a Steady State Hysteresis Loop Executed at a

Strain Rate of 3.66 x 10 -4 sec "1 at ¢0.6% Strain Amplitude

7 9 80--7 --40-- 13



,ii 10.29

2.54,__L,
F--_, _ -,_

0.64 DIA

O 'I
1.91

1

0.127

Figure 19. Standard Tensile and Creep Sheet Specimen (Units in cm)

81--9--103--6

8O



EXPERIMENT

Q CALCULATION (FUNCTIONAL THEORY)

_" -55. Q2_ •

i- --------.L_.__:•"_ -41.4

rr

09

m

-27.6

-13.8

m

n

m

I I I I I
0 5 10 15 20 25 30

TIME IN seconds

Figure 20. Theoretical and Experimental Relaxation Behavior for Hastelloy-X at

982°C (1800°F) Starting at a Zero Strain Value on the Compressive

Branch of a Steady State Hysteresis Loop Executed at a Strain Rate

of 3.70 x 10 -5 sec "1 at +0.6% Strain Amplitude

80--7 --40-- 1

8t



Figure 21.

-- EXPERIMENT

• CALCULATION (FUNCTIONAL THEORY)

-124.2 ....

-110.4 --

-96.6 --

_ -82'81_

_ -69'0L_

r'r -55.2 _ _.

o I I I I I
0 5 10 15 20 25 30

-27.6

-13.8

TIME IN seconds

Theoretical and Experimental Relaxation Behavior for Hastelloy-X at

982°C (1800°F) Starting at a Zero Strain Value on the Compressive

Branch of a Steady State Hysteresis Loop Executed at a Strain Rate

of 3.66 x 10.4 sec "1 at :1:0.6% Strain Amplitude

82

80-7--40--2



EXPERIMENT

• CALCULATION (FUNCTIONAL THEORY)

Figure 22.

-138.0

-124._

-110.4!

-96.6

-82.8

-69.0

_ _5s.2t- \•

41 4

-27.6 --

-13.8 --

m

0
0

I I I I I
5 10 15 2O 25 30

TIME IN seconds

Theoretical and Experimental Relaxation Behavior for Hastelloy-X at

982°C (1800°F) Starting at a Zero Strain Value on the Compressive

Branch of a Steady State 4ysteresis Loop Executed at a Strain

Rate of 3.87 x 10 -3 sec "1 at +0.6% Strain Amplitude

80--7 --40--3

83



_J", =,,1111!1 =_",_-k"='

__l-J_el( AND WIqI[E PI-IOTOci'R,&pH

EXTENSOMETRY
RIDGES

Figure 23. Tubular Specimen for Thermomechanical Testing

I Reproduced frombest available copy. @84 81-9-103-7



MPa

(ksi)

345

(5O)

276

(40)

207

(30)

138

o9 (20)
o9
uJ
rT-

69

o9 (1o)_.J
<

o

-69

(-10)

-138

(-2O)

-207

(-30)
-0.45

#60

#70

#8O

AXIAL STRAIN (%)

Figure 24. Test Specimen Response at Cycles 60, 70 & 80

85
81--9--103--1



TEMPERATURE, °F

O0

o
I

,,,,4
1,0
I

"11
m,

r-

r@

-,,I

3
o
3

=r

(1
m

--I
0

3
"o

C

o
Z
m,

o

0"1
0
0

C)

0 --

0

0
0

rrl

('D

o2. o_
0

0

GO
0
0

GO
0"1
0

0
0

0
0
0

0
0

IX3
0
0
0

Ix.)
0"1
0
0



STRAI N, %

O0

O

I

I

"11
cD

,-I

O
3
o
=1" _{

D

_" m

DI

O

O

O I

O

O

6
b_

1",.3
O
O

I",5
Cn
0

CO

0

GO

0

4_
0
0

I ii

I-
I

4 _

I iiii i

6
4_

6

|

0

0

LL



0.2
,!

=

o_
Z

t'r-
I.--
GO

-0.2 -

i

-0.6

900 1000 1100 1200 1300 1400 1500 1600

TEMPERATURE,°F

1700 1800

Figure 27. Thermomechanical Strain Temperature History

88

80--11--72_25



f

OUTER SHROUD

QUARTZ

COVER

TEST SPECIMEN

"IRTRAN"

WINDOW

QUARTZ

FLOW GUIDE

FLOW

DIVIDER

PLATE

FLOW

STRAIGHTENERS

FLOW
DISTRIBUTOR

AIR

PLENUM

0.15

(0.5)
I

SCALE

SHROUD

COVER

J

0.30 M

(1)
,I

INSPECTION

PORTS

Figure 28. Combustor Liner Induction Heating Test Rig

81--9--103--8

89



ORIGINAE PAGE

BLACK AND WHITE PHOTOGRAPH

r

(a) (b)

SPECIMEN

Q

REPRESENTATIVE
THERMOCOUPLE

LOCATIONS*

Figure 29. Assembled Liner Test Specimen and Cover (a) and 5-Louver Test Section (b)

I Reproduced frombest available copy.

9O
81 --9--103--15



UJ
rr

F-
<
rr
uJ
EL

UJ
f--

C

(°F)

982

(1800) F
927

(1700)

871
(1600)

816
(1500)

760
(1400)

704
(1300)

649
(1200)
59_

(1100)

538
(1000)

482
0 10

m_mm

LOUVER LIP_ 8, 6 4

"i

10 9

w_

• _ 2.84

7 ' 0.881 DIMENSIONS IN cm

8

4

3

5 2

10

9

7

! I i
20 30 40 50 60 70

CYCLE TIME (sec)

i
8O

!
90

Figure 30. Measured Thermal Response

91

81--9-103--12



E TART INCREMENT n ]

i
ASSUME f'ei, FROM INCREMENT n-1.

READ LOAD INCREMENT AP i OR DISPLACEMENT

INCREMENT Au i, TEMPERATURE INCREMENT A(-),

AND TIME INCREMENT At FOR INCREMENT n

ENTER SUBROUTINE HYPELA FOR EACH INTEGRATION

POINT IN EACH ELEMENT. INTEGRATE CONSTITUTIVE

THEORY OVER SUBINCREMENTS TO OBTAIN ACCURATE

VALUES OF DijANDA_ i IN THE cONsTITUTIvE RELATION

Ao i = Di j (Aej -a jo_AD) -A J i

WHERE

/'_i = A_i ("ej)

t
SET AE= E oi._e i

i=1

[
AFTER Dij , Bij AND A_i HAVE BEEN COMPUTED AT EACH INTEGRATION

POINT, CALCULATE THE INTEGRALS

Kij= El BikTDklBijdV,
J

V

AP i = Ef Bij T (A_j + ajeAL$) dV

V

ARi = Pi - Ef BijToj dV
V

AND SOLVE THE EQUILIBRIUM EQUATIONS

ORI;G_NAL iP_-"_2 _S

OF POOR QUALIq[_

KijAuj = APi + APi + &Ri

[
!

CALCULATE _i = BijAuj {
,I

f

CONVERGED?{

E oiA_ i -AE {

i = 1 , < TOLERANCE

AE

_ YES

UPDATE STRESS, STRAIN, TEMPERATURE

AND STATE VARIABLES

MAXIMUM NUMBER OF

ITERATIONS EXCEEDED?

! NEXT INCREMENT n '+ 1 i

Figure 31. Flow Chart of MARC Iteration Procedure
81--9--103--9

92



138

EL

v

Go 69
03
L.U
rr
I--
09

0.2 0.4 0.6

STRAIN (%)

0.8

Figure 32. Integration Algorithm is Stable and Accurate

93

81--9--103--34



',..O

EL

Ob

'-,.O

II

y.

.,r-,

v

03
03
LU
n'-
I'--
03

100

5O

0

-50

-100

1400°F

S

1300 °F

r

J

0 +1 -1

STRAIN (%) STRAIN (%)

+1

1200°F

-1 0

STRAIN (%)

+1

Figure 33. Theoretical Hysteresis Loops for Hastelloy-X Predicted with Linearly

Interpolated Material Constants



UNIFORM

DISPLACEMENT

! I
141 2

1in r--t---
1311

-- _ -J

I
It
I

I
I

UNIFORM

DISPLACEMENT

1 in.

6 3

ELEMENT 4

ELEMENT 3

,ELEMENT 2

5 2

ELEMENT 1

7 4 1

in.

Figure 34. Axisymmetric Finite Element Model Used in the Thermomechanical History

Simulation Models One Quarter of the Problem Using Roller Boundary Conditions

95

81--9--103--11



N
+

E

N

LARGE n2

INTERMEDIATE n 2

sj.,,,,

LARGE n 2

INTERMEDIATE n2

E

Figure 35. For Large and Small Work Hardening Rates the Stress-Strain Curves are

Relatively "Square". For Intermediate Work Hardening Rates the
Stress-Strain Curves are Rounded

96

81--9--103--16



13_

Ob

_5
H

,r--

v

CO
CO
LU
or-

CO

100

50

-50

-1O0

0

STRAIN (%)

+1

Figure 36. Hysteresis Loops for Hastelloy-X at 760°C (1400°F) Generated with the

FunctionalTheory with n2 =0.8 x 107

97

81--9--103--17



100

50

G_
0.-

C_

(..O

H

0

v

CO
CO
LLI
PF
I--
O9

-50

-1 O0
-1 0 .1

STRAIN (%)

Figure 37. Hysteresis Loops for Hastelloy-X at 760°C (1400°F) Generated

by the Functional Theory with n2 = 5.0 x 107

98

81--9--103--30



1O0

¢u
{3_

ob
(D
II

v

cO
cO
Iii
cr
F-
cO

50

-5O

-1O0
-1

i i i

0

STRAIN, %

3.87x103s 1

3.66X104s -1

3.70x10-5s -1

1.11 x10 -5s 1
i

1.25 x 10 -6 s 1

+1

Figure 38. Theoretical Hysteresis Loops at 649°C (1200°F)

Generated with Functional Theory

99

80--11 --72--6



cO
EL

(33

(.0

H
"3

1O0

co

v

CO
CO
LU
rr
F-
CO

50

-5O

3.87x10-3s -1

|

• I 3.70x10 -5s -1

1.11 x lO 5 s -1

1.25 x 10 ,6 s 1

t //

3.66x104s -1

STRAIN, %

Figure 39. Theoretical Hysteresis Loops at 704°C (1300°F)

Generated with Functional Theory

i00

80--11--72--7



100

5O

r_

Ob

_d
H

0

v

O9
09
LU
rr
N--
09

-5O

-100
-1

3.87x10-3s -1

3.66x10-4s 1

3.70x10-5s 1

1.11x105s 1

1.25x10-6s 1

STRAIN, %

Figure 40. Theoretical Hysteresis Loops at 760°C (1400°F)

Generated with Functional Theory

80-- 11 --72--8

101



100

3.87x10-3s -1

r_

ob

H

v

OD
O"3
UJ
rT
F-
(/3

3.66x10-4s -1

3.70x10-5s -1

1.11x105s 1

1.25x10-6s -1

STRAIN, %

Figure 41. Theoretical Hysteresis Loops at 816°C (1500°F) Generated

with Functional Theory

102

80--11--72--9



13-

Ob

H

co
v

v

CO
(/)
UJ
cr
F-
U)

IO0

5O

,,

-50 '

-1 O0

3.87x10-3s -1

3.66x10-4s -1

3.70x10-5s -1

1.11x10-5s -1

1.25x10-6s -1

STRAIN, %

Figure 42. Theoretical Hysteresis Loops at 871 °C (1600°F) Generated

with Functional Theory

80--11--72--10

103



cO
EL

O_

CO

H

co

v

CO
CO
L_J
EE

CO

1O0

50

-50

-1O0

0

STRAIN, %

3.87x10-3s -1

3.66x10-4s -1

3.70x10-5s -1

1.11x105s 1

1.25x10-6s -1

Figure 43. Theoretical Hysteresis Loops at 927°C (1700°F) Generated

with Functional Theory

104
80--11--72--11



13._

(3")

_0

H

*r--

O9

v

O3
CO
LJJ
CC
F--
CO

100--

50--

-50 -

0

STRAIN, %

Figure 44. Theoretical Hysteresis Loops at 982°C (1800°F) Generated

with Functional Theory

I05

80--11 --72--12



EL

(33
_5
H

v

cO
cO
LJJ
rr

cO

100

50

-50

-100

o

3.87 x 10 -3 s-1

3.66 x 10 -4 s -1

3.70x10-5s -1

1.11x10-5s °1

1.25x10-6s -1

0

STRAIN (%)

+1

Figure 45. Theoretical Hysteresis Loops at 649°C (1200°F) Generated

with Krieg, Swearengen & Rohde's Theory

106

81 --9--103--1 3



100

50

(3)

H

0

v

03
03
LLI
r'r"
I'--
03

3.87x103s 1

3.66x10-4s -1

3.70x10-5s 1

1.11x105s 1

1.25x10-6s -1

0

STRAIN (%)

+1

Figure 46. Theoretical Hysteresis Loops at 704°C (1300°F) Generated

with Krieg, Swearengen & Rohde's Theory

107

81--9--103--14



100

5O

n

(33

H

0

03

03
03
UJ
rr

03

-5O

-1 O0

3.87 x 10 -3 s-1

3.66x10-4s -1

3.70x10-5s -1

1.11x10-5s -1

1.25x10-6s -1

-1 0

STRAIN (%)

+1

Figure 47. Theoretical Hysteresis Loops at 760°C (1400°F) Generated

with Krieg, Swearengen & Rohde's Theory

108

81 --9--103--26



100

50

o_

o_
£o

H

,__ 0

09

v

cO
cO
uJ
rr
H-
o9

-100

3.87x10-3s -1

3.66x10-4s -1

3.70x105s 1

1.11x105s 1

1.25x10-6s -1

0

STRAIN (%)

+1

Ib

Figure 48. Theoretical Hysteresis Loops at 816°C (1500°F) Generated

with Krieg, Swearengen & Rohde's Theory

109

81--9--103--25



100

50

13_

Ob

(.O

II

_- 0
co

v

CO
CO
LIJ
rr
F-
CO

-50

-100

/

3.87 x 10 -3 s-1

366×10- 4 s -1

3.70 x 10 5 s "1

I Ii 1.11x10-5s-1

///J 1.25x10-es -1

0

STRAIN (%)

+1

Figure 49. Theoretical Hysteresis Loops at 871 °C (1600°F) Generated

with Krieg, Swearengen & Rohde's Theory

81--9--103--29

ii0



n

ob
_d
II

v

cO
cO
LU
rr

cO

100

5O

-5O

-100

_71 1
All

L

I I1

_.__J

3.87x10 -3 s -1

3.66 x 10 -4 s -1

3.70x10 -5s -1

1.11 x10 -5 s -1

1.25 x 10-6 s 1

0

STRAIN (%)

+1

Figure 50. Theoretical Hysteresis Loops at 927°C (1700°F) Generated

with Krieg, Swearengen & Rohde's Theory

iii

81--9--103--28



G-

Ob

_5
H

"3

O3

v

CO
03
LU
CE
F'-
03

100

50

-50

-100
0

STRAIN (%)

3.87x103s -1

3.66x10-4s -1

3.70x10-5s -1

1.11x10-5s -1

1.25x10-6s 1

+1

Figure 51. Theoretical Hysteresis Loops at 982°C (1800°F) Generated

with Krieg, Swearengen & Rohde's Theory

81--9--103--27

112



t_

Ob
_d
H

v

O9
O3
IiI
rr

CO

IO0

5O

-5O

|11

3.87x103s 1

3.66x10-4s 1

3.70x10-5s 1

1.11x105s 1

1.25x10-6s -1

-IO0

-1

,J

0

STRAIN (%)

Figure 52. Theoretical Hysteresis Loops at 649°C (1200°F) Generated

with Miller's Theory

113
81--2--112--2



c_
[3_

Ob
_5
H

v

CO
03
LU
or-
F--
CO

100

50

-50

i i i i

3,87 x 10 -3 s 1

3.66 x 10 -4 s -13.70 x 10 -5 s-1

" ' i 1.11 x 10-5 s-1

' ' 1.25X10 -6s "1

i rllrll ....

-100 - k II

0

STRAIN (%)

Figure 53. Theoretical Hysteresis Loops at 704°C (1300°F) Generated

with Miller's Theory

81--2--112--3

114



O_

H

O3

v

03
03
LLJ
n"
F--
03

100

50

-5O i mml•

3.87 x 10 -3 s 1

3.66x10 -4 s 1

3.70 x 10 -5 s-1

1.11 xl0 -5s -1

1.25 x 10 -6 s 1

-1 O0

-1

, llm _ 1

0 I

STRAIN (%)

Figure 54. Theoretical Hysteresis Loops at 760°C (1400°F) Generated

with Miller's Theory

115

81 --2--112--4



100

5O

Ob
_5
H

-,- 0

2._
v

09
0'3
LLI
n'-
1--
03

-5O

i • I | ul nl u

///// .. //_/
rill IU"
rll D"

,I1/ _ /
II II I

i

3.87 x 10 -3 s -1

3.66 x 10 -4 s-1

3.70 x 10 -5 s1

1.11 x10 5s 1

1.25x10 6 s-1

-100 ' d

0

STRAIN (%)

Figure 55. Theoretical Hysteresis Loops at 816°C (1500°F)

Generated with Miller's Theory

116

81--2--112--5



100

r_

Ob
£o
ir

5

5
v

03
03
LU
rr
F-
03

5O

-50

-100
L

.____3.87x10-3s -1

.___ 3.66x10-4s -1

3.70X10-5s -1

1.11x10-5s -1

u__'__,l.25x10-6s 1

I111 ,l/z#
' iZ_V"

i

0 +1

STRAIN (%)

Figure 56. Theoretical Hysteresis Loops at 871 °C (1600°F)

Generated with Miller's Theory

117

81--2--112--6



cU

(D3

_d
H

2L
v

CO
O9
LU
ef-
t--
69

100 '

50

0

-50

-1 O0 |1 i i | ii ,

-1 0

STRAIN (%)

3.87x10 -3 s 1

3.66x10 -4 s 1

3.70 X 10 -5 s-1

1.11 xlO -5 s-1

1.25 x 10 -6 s -1

Figure 57. Theoretical Hysteresis Loops at 927°C (1700°F)

Generated with Miller's Theory

81--2--112--7

118



100

13-

(33

u5
II

-,r,-

v

O3
CO
LU
n"
t--
CO

5O

- -50

ii L I • I

I

d I

0

STRAIN (%)

3.87xlO-3s -1

3.66x10-4s 1

3.70x10-5s 1

1.11x10-5s 1

1.25x10-6s -1

Figure 58. Theoretical Hysteresis Loops at 982°C (1800°F)

Generated with Miller's Theory

81--2--112--8

119



EXPERIMENT FUNCTIONAL THEORY

I-O

o

43,01 3

35,844

28,675

21,506

14,338

-_ 7,169

03
03 0
uJ
rr
I--
03

-7,169

-14,338

-21,506

-28,675

-35,844

-43,013

1000 psi = 6.9 MPa

_3,_,o_4s1//

3.70 X 10-5 S-111 I
1.,1×1o-5s-1/_

1.25X 10 -6 S'I//_

,
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

_V

36_o-4s__I

,1,×lO-_s-1//_r

H
111

,
-0.6 -0.4 -0.2 0

I i I

0.2 0.4 0.6

STRAIN (%) STRAIN (%)

Figure 59. Comparison of Experimental and Functional Theory Predictions for

Hastelloy-X at 871°C (1600°F)
.4--



r_

v

cO
co
u_!
r'r-
I--
cO

2OO

100

0

-100

-200 [ I

-0.6

EXERIMENTAL

(sec -1)

3.87x10 -3

3.66x10 4

3.70×10 -5

1.11x10 -5

1.25×10 -6

FUNCTIONAL THEORY

t t t t I . t I I I I I

-0.2 0.2 0.6 -0.6 -0.2 0.2

STRAIN (%) STRAIN (%)

I

0.6

Figure 60. Comparison of Experimental and Functional Theory Predictions

for Hastelloy.X at 982°C (1800°F)

81--9--103-19

121



EL.

H

v

CO
CO
LIJ

F-
U')

3O

-10 -

-20 -

-30 -

[.

, ,7,

m

u

, I I I I

-1.0 -0.5 0 0.5 1.0

STRAIN (%)

Figure 61. Hysteresis Loop Predicted by Functional Theory at 982°C (1800°F)

for Strain Rate of 1.25 x 10 .6 sec "1. Output from MARC

81--9--103--20

122



EL

10

II

,-.-- 0

CO
v"

-10
CO

LLI

rr

I--

O3

-20

-3O

30 -

20 - m

m

m

I I I I

-1.0 -0.5 0 o.5 1.0

STRAIN (%)

Figure 62. Hysteresis Loop Predicted by Functional Theory at 982°C (1800°F) for Strain Rate of
1.25 x 10 -6 sec "1. Three MARC Increments were used to Load from Zero Strain to

0.6% Strain with Thirty Subincrements per MARC Increment

123
81--9--103--21



1.4

CALCULATION (MILLER'S THEORY)

EXPERIMENT

1000 psi--6.9 MPa

1.2

1.0

o_
'4J

-21,500 psi

-7,200 psi

-14,300 psi

-28,600 psi

I I I I' I
10 2O 30 40 50

t (seconds)

6O

Figure 63. Creep Response of Hastelloy-X at 1600°F

]_2/4. Sl--2--112--9



(0
CL

O_

H
"3

3
v

O9
CO
LJJ

t--
CO

75

5O

25

0

-25

i . i

r/

-0.5 -0.4 -0.3 -0.2 -0.1 0

STRAIN (%)

Figure 64. Thermomechanical Loop Predicted by Functional Theory

81--2--112--1

125



UO

0

l--

z

uo "_
• n ii

LO 0 LO
0 Oq

0

'T
I-

'T
I

_D

c_

_dM 69 = !s__(!s_)SBBU±$



EL

O_

_0

H

.3(
v

03
03
I-IJ

F--
03

75

50'
J

|11 i|

-0.5 -0.4 -0.3 -0.2 -0.1 0

STRAIN (%)

Figure 66. Thermomechanical Loop Predicted by Krieg,

Swearengen & Rohde's Theory

81 --4--42--1

127



OO

SYMMETRY BOUNDARY

CONDITIONS

A

B

SYMMETRY BOUNDARY

CONDITIONS

I

I

O

I

Figure 67. MARC Finite Element Breakup of Combustor for Liner Specimen



1800

I i I I I i _ i
10 20 30 40 50 60 70 80

TIME (seconds)

I

90 1O0

Figure 68. Transient Temperature Response at Integration

Point Closest to the Louver Lip

81 --3--74--2

129



L,O
O

20
13-

_0

II 10

v 0
v

cO
cO
Lu
rr

co -I0

50 n

40--

30--

m

m

-20 -

-30 -

i

-0.5

I
6,1

t

I I

-0.4

Figure 69.

L I i _ I
-0.3

STRAIN (%)

-0.2

I
-0,1

Hoop Stress Hoop Strain Hysteresis Response at Integration

Point Closest to the Louver Lip .._o



a (STRESS)

_-=39x 103 sec-1 1

amax

A=1%

=133 MPa

(19.2 ksi)

C (PLASTIC STRAIN

Figure 70. Elastic-Perfectly Plastic Hysteresis Loop Approximation

for Hastelloy-X at 982°C (1800°F)

131

81 --9--103--24



z = 1.000 in.

z = 0.500 in.

z = 0.375 in.

z = 0.250 in.

z = 0.125 in.

z,= 0.000 in.

1.38°F 1.31 °F

1.31 °F 1.24°F

1.09°F 1.04°F

0.67°F 0.64°F

OOF OOF

r=O in. r :0.15 in.

Figure 71. Temperature Rise in Hastelloy-X Specimen at 982°C

(1800°F) Due to Plastic Deformation

132

81--9--103--33





Appendix 1. Walker's Theory (Integral Form)

o-ij (t) : _- .Q ij(t) + Bij X (@(t))+ _-ff(@(t) -3a(®( d: + e (®(t)) --_-- - BiJ -_" P(_D( t )) c_:
(1)

o _t
.O.ij (t) :a ij(t) + nj (® (t))c ij(t) + nz(®(t))j

-0

e _{G(t)_G(_) } c_cij
a( d_,

(2)

K(t) : K i(@ (t)) - K2(®(t) )e -n 7(@(t)) R(t) (3)

_0

cij(t): oJof" ijX(®(t))-- --+2ffC®Ct)) ct_ 8_ Bija(®(:)) 5X(®C_))+2ff(8(:)) _ d_,a_

0 0

.O.ij (t) : - Bij .g. (®(t))+ 5._. (®(t))
c ik(t) Ckj (t)

Cpq(t)Cpq(t)

(4)

(5)

fOt 3/_(e(:)) (_R 1t-I/n(@(_'))O(t): K(_) _B( / d_,

G(t): n3(®(:)) + %(®(:))e- _ + ne (®(:))

m(@(:))-_

(6)

(7)

,fot_/__ _cij 5cij 'R(t): O_ -a_ d_"

0

Material constants: X, H.,._,n,m,nt,n2,n3,n4, n5,n6,nT, KI ,K 2 depend on temperature.

(8)



Appendix 2. Walker's Theory (Differential Form)

(1)

anl _) -(9.ij ° (G I c)n2®)"_ij = (nl+n2)cij +cij o_@ -'O'iJ- nl cij ) n2 c)® (2)

--n7R
K=KI-K2 e (3)

L,O

Cij : (Sij X4 kk + 2/.L_ ij- &ij - 8ij(SX +2p.) a_))/2_ ,
(4)

2
Po: (n3+n4e-n5R)tR+n6 -_--.gij.O, ij

(5)

RV/T. '= cij _:ij , (6)

I

Sij:°ij .5 _ij °kk "

Material constants:
0

X,p. ,.O., n,m _lqI _ n 2, n3, n4 _n s, n6, n7, K i _ K 2 depend on temperature.



Appendix 3. Chaboche's Theory

! n

-_,i)(-_s,j-_,j
K

X>:_O ifx<Owhere <

x ifx>O

J-}(÷ ,,j-_,j)(_,,j- ,_,j)'
(1)

"Qij: Of(R)[o_ij - IR "gij-b (+ ,_,j,_,j)--
m-I

2 8C I 88
+ +

a 8@ (2)

L.o

L..n

8f(R)

I 8R (2
Y: 2C-----a-f2(R i T Q" Q.ij) +g(R), (3)

cij:(SijX4kk + 2P._ij-o-ij-Sij(5,k.+2ff)e_)/2p. , (4)

f(R):_+(I-_)e -/_R
,j (5)

g(R)=h(I-e -yR) ,

j{_IR: _ ij _:ij ,

(6)

(7)

Sij : °'ij- _ 8ij °'kk"

Material constants: X, H-, K, k, n, m ,a, b, c, 2, h,/3,7" depend on temperature.

(8)



Appendix 4. Miller's Theory (Differential Form)

._ij: Hll_ij - HI B_ I

sinh AlJ_,O, ij_ij i ,x_2,O.i.j,Gij

(1)

, (2)

I_=H21_ C2+,X_Z,Gij,_ij AI K -H2C2B_' sinh(A2K 3) , (3)

L,o
O'x

Cij: (Sij X4 kk + 2H-E ij -&ij -8ij (SX +2H') a_)/2H" (4)

I

IR :J-_.- C:ij(;ij , (5)

' 8i j (6)sij : crij - -3- °'kk

{8 t: exp for T > 0.6T m , (7)

{_o. (8t:exp _6kT _ I+ T fo r T < 0.6 Tm (8)

Material constants: n, H I , H2, A I , A 2 , C 2,,Q*, k are independent of temperature.

Material constants: X, F- ,14o , et depend on temperature, where Ko is the initial value of K, and T is the temperature,_ °K.



Appendix 5. Miller's Theory (Integral Form)

(1)

t ,{G(t)-G_')} acij_.ij(t) : HI e 8_ d_,
(2)

Go

K(t) Ko+H 2 _O 2÷ "O'iJ(_)Q'iJ(_)l {J
: -A2K3(_')/A e- (t)-J(_)} OR

ac dC,

[ a_ij acrij

t _8 aEkk + 2/_ (®(_'))IoCIj (t): iJ x (_(_)) a_-- a_ a_ ij (2 (e( _))(5 X(e(_)) )+ 2p.((D(_)) d_,

.jro1 3/_(8(()) I (o(t): K_') sinh-i tBO_(®(C))

.t

G(t)- HIJ 0 BO/(_((_))

{sinh(Ai j2 D'iJ(_)'O'iJ (_) ,)}n

J D" ij (_) ,0, ij(¢)

d_,

.t {sinh (AzK3(_))} n

J(I)=H2C2 JO BeI((D(_¢)) K(_')-Ko
d_,

(3)

(4)

(5)

(6)

(7)

o acij acij ' (8)



Appendix 6. Lee and Zaverl's Theory (Isotropic Form)

For _ sij sij-D,

_ij
iJ -'0" iJ)({Sij -'0" iJ ) le xP l- "_eK 9"KJ)(--2-siJ- "0'iJ +

exp
Dk® ({s,i-_,j)Z 3 -9,.. 3 s..=9,

, (1)

p._l

O0

_iJ: /_(_Sij_9.ij)(__Sij_£ij)z3 , where o-ij: j{({si j_9.ij)({sij__,ij), ,

0R(_-Y) hR
_'= where _,s:

J{-(_s,j-,',,j)(_,j-,-,,,j)' 2 3 _ 3 IJ_(__,j- ,j)(-_s,j-,,,,j)

(2)

(3)

K=_Y,

Cij : (8ijk4kk + 2/-zEij-°'ij - 8ij(3k+ 2p.)al_)/2p. ,
(4)

IR= 2. • _ I 8i jCi_ ' Sij:°'ij 3 °'kk "

Material constants: X ,p, ,Ko,Yo,n ,q ,C, g, h,a depend on temperature, where Ko and Yo are the initial values of K and Y.

Material constants: B, D,k are temperature independent.



Appendix 7. Bodner, Partom and Stouffer's Theory (Isotropic Form)

C:ij-- Do exp ---_-

jsij

s,_j

,v/_SiiSij

(1)

kO

t az c _i(()
z iJ _+_t a z (:ij _ (,_q)

= q-_- d( + l&ij----j a( Icij(()l

/_ acijZ:m(zl_z0)e-m sij T d,_ Sij_:ij,

d_, (2)

(3)

ij : (8ij kEkk + 2_Eij - &ij - 8 i j( 5 ;k+ 2H. )a _) )/2H.,
(4)

I
Sij: °'ij - T 8 ij °'kk " (5)

O

Material constants: X,p., DO, z,q, m ,n, z I, z o depend on temperature

The quantity Zij is not a tensor, but depends on the sign of the ij th component of the inelastic strain rate.



Appendix 8. Krieg, Swearengen and Rohde's Theory (Differential Form)

Cij =(J_(-'_-sij-'GiJ)({sij-Q'iJ)") n (_--sij-'0"iJ)

(1)

,( )D. ij:Al_:ij-A.2_ij _____,_pq_pq e AS-_pq_pq -I , (2)

O

I'(: A4 R- As(K- Ko )n ,
(3)

C;ij :( _ij k_kk + 2F-_ij- _ij-Sij(Sk+ 2ff)c_)/2_,
(4)

I

IR:.k/-_- (;i j (} i j ,
(5)

I
Sij = e-ij-_- 8ij O'kk •

(6)

Material constants: k,p.,n ,AI,A2,Az, ,A 4,A 5 ,K o depend on temperature, where K 0 is the initial value of K.



Appendix 9. Krieg, Swearengen and Rohde's Theory (Integral Form)

t 2
(1)

_0t -{G(9- G(_)} clCij"GiJ(t)= Al(®(_C))e a_ d_, (2)

_t -{ J(t)-J(_)}aRK(t)=Ko(®(t))+ A3(G(_'))e ol---_-d_, (3)

i.-i

f0t( _kk °_EiJcij(t)= SiJX(@(_))--_ - +2F(®(_¢)) 8---_- a("-SUe(®(()) kCS(())+2p.(lD(_¢)) _ d(,

Q(t):_ t 3F(®(())(SR _,-,/n(e(_))

G(t):/ AzI®(()),x/2.-___ij((),O, ij(_ ) e -I d(,
"0 --'J

(4)

(5)

(6)

#o t ( )n(8(@-,J(t)= A4(8 (_')) K(_)- Ko (8 (_')) d(, (7)

/ot/2 ctcij ctcij IR(t): 2 d_¢.
a_ a_ (8)



Appendix 10. Cernocky and Krempl's Theory (Integral Form)

/.t _to(t ) _
o-ij(t): .O,ij(t)+JO e c]E ij aEkk aGiJ _ija (_(_" })( d_, (1)

_ij(t) I,o,i_(t): ,--
' ,X/_/i j (t)',[/ij (t)

Et (_)(t) )J't/i jCt)'t'i j(t)
(E(®(t))-EtC®(t))

+
2a(O(t)) tanh[b(®(t)) ]

'
( cos-----h-/io(---8 (t)--)_a(% (t_i_/_l(t)_il(t--_---) )_ j

(2)

I'0

,,I,ii (t): [Sii X(® (t))
Ek k ('f)+ 2 _ (®(t))EijCt)- _ij

(3)

(4)

J(t): K(®(t)) exp I 8 (® (t)) exp[- r_(®(t))J(o-ij(t)-g ij (t)) (a-ij(t)-,Gij(t)) I ] 1 •

Material "constants" X ,/_, Et,a, b,K, 8, _ depend on temperature, E --Young's modulus =
ff(sX+2ff)

X+_

Material "constants'" E t ,a ,b ,K ,8 ,_ are updated under cyclic loading conditions.

In this particular formulation it is assumed that Poisson's ratio is constant. This assumption can easily be relaxed.

(5)



Appendix 11. Hart's Theory

)C:ij = _' si J-'O'iJK s iJ-'O'iJ ,)n (1)

,_.ij =K(:ij -Kf
(o-*)m .0.ij

' (,lt,,_ o'* )1//3J--_-.O. p q .Q,p q J-_-.O. pq .0.p q

(2)

_o

O- -

Cf (o'*)m +l F (o'*, ,_1)

_ _-* )_/#J-_--.O. pq ,0.pq I

(3)

F (G_, ,G ) = , (other forms were also considered in Delph's review paper [23] (4)

Cij : (Sij X'_kk + 2P'_ij-_ij- 8ij(SX+ 2/.L) al_)/2p. ,

I
Sij:Gij-" _- 8ijO'kk"

(5)

• _ =k *

Material constants: X,p.,c], K n,f,, O-o,m, ,B,C ,7",8 depend on temperature where o-o is the initial value of o-*



Appendix 12. Valanis' Theory (Isothermal Form) _"

o-ij(t) : 8ij (X
+ 2 +, l

o_Eij I °_Ekk

a_ 3 s_j a_ d_, (1)

- al[z (t)- z(_')] - a2[z(t)-z (_) ]
6 [z (t)-z(_)] : Gle +G2e ,

(2)

z(t): # _ (I-/3 R (t)),
(3)

.p_

.p-,, ' ()R(t)=_ a8 c_eq-E-f -_-- d_,
(4)

a8 //_ aci ac ': 2 J ij
(5)

f a(____) _.
--a function of _e which varies [25] according to the type of deformation (creep, relaxation),

a(
(6)

c_Cij _Ekk _Eij a°iJ (o<k<l).
a_" : _ij X a----_---+ 2p. a_ k a----'-_ '

Material constants: X,p.,GI,G2,a I, c_2,/3,k. Further constants are needed to define f (-_-_)

(7)



APPENDIX 13

A question naturally arises as to how much heat is generated in uniaxial

Hastelloy-X specimens when they are subjected to cyclic triangular strain his-' T

tories, at strain amplitudes of about ± 1 percent. The specimens are cycled at

a given temperature which is monitored by thermocouples attached to the grips at

the ends of the specimen. If heat is generated by the dissipation of inelastic

work during cyclic loading of the specimen, the temperature of the specimen will

inarease above that of the oven temperature until a steady state is reached.

Under steady state conditions, the rate at which heat is produced by inelastic

working of the cylindrical specimen is equal to the rate at which this heat is

conducted through the grips at the ends of the specimen and through radiation and

conduction at the cylindrical surface of the specimen. The following calculations

show that at 982°C (1800°F), for a strain rate magnitude of 3.9 x 10 -3 sec -I, the

steady state temperature in the central part of a Hastelloy-X cylindrical button

head bar specimen exceeds the oven temperature by about 0.8°C (l.4°F) due to in-

elastic working. At room temperature, the temperature rise in the specimen does

not exceed 22°C (40°F) at a strain rate of 3.9 x 10 -3 sec -I, whilst at 3.9 x 10 -4
-i

sec it does not exceed 2°C (4°F). Hence, the effects of inelastic dissipation

of work into heat can be neglected in the data reduction of the Hastelloy-X tests.

The coupled heat conduction equation for a cylindrical rod under uniaxial

loading may be writte_ in the form

ps -k + +
c%r2 _kar 2 r _r

+ D, (1)

where p is the density, s is the specific heat, _ is the temperature in the speci-

men, and D is the rate of dissipation of work into heat due to inelastic working.

In formulating Eq. (i), small heat source terms, such as that arising from the ex-

pansion and compression of the material, have been neglected in comparison with

the inelastic dissipation.

Under cyclic loading, about 90 percent of the work in typical metals is dissi-

pated as heat whilst the remainder is used to produce microstructural changes

(evidenced by working hardening). Since Hastelloy-X does not work harden at

elevated temperature, one may assume that all of the work is dissipated as heat and

take D in the form D = o c where c is the inelastic strain rate. The average dis-

sipation rate over a hysteresis cycle is then obtained in the form

_0 T Oc
(2)

where T is the time for one cycle.
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The value of D may be found by noting that the stress-strain hysteresis loop

for Hastelloy-X at 982°C (1800°F) may be represented fairly well by an elastic-

perfectly plastic loop. Hence,

T

o" "_" d_'-
area of loop in fig. 70 (3)

T

or

, _ 4O'rnax A
D= T '

where o is the maximum stress in the hysteresis loop.
max

At large strain values (_1%), the total strain is approximately equal to the

plastic strain, g _ c, so that the magnitude of the total strain rate is given by

l_I _ 4A/T. The average dissipation rate then becomes

D" :O-rnaxl_.l . (4)

Since o and l_l_are spatially constant throughout the rod, the average dissipation

rate, given by D in Eq " (4), represents a constant source of heat.

The steady state equations governing heat conduction in the rod are:

82® f 8z® +Q+-e- +--yjz2 :o,

kS® +h(O-®o)=O at r=a-E;-

0=0o at z=O and z=_,

(5)

(6)

(7)

where O o is the temperature of the end grips and the oven (as measured by thermo-

couples on the grips).

Choosing

®=Oo+v(r, z)+ _5(z), (8)
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Eqs. (5)-(7) become

I av
r dr

a2v a2@
+- v2 +Q:o,

c)v
k --_-_- + hv :-h @ at r--a,

v:-_ at z:O and z--_.

(9)

(i0)

(ii)

Equation (9) can be made homogeneous by choosing

Choosing _ = 0 at z = 0 and z = Z then gives

I
: T Q z(_-z), (12)

t

and Eqs. (9)-(11) become:

02 v

Or 2
I __+ a2v

+ C- ar c)z2:0,

k av I
Or +hv:---_-hQz(_-z) at r:a,

(13)

(14)

v:o at z:O and z:_. (15)

The solution to Eq. (13) which is finite at r = 0 and satisfies the boundary condi-

tion in Eq. (15) is

co_. sin nIlz (___)v _ an _ I o
I"I=I

(16)

where Io(X ) is the Bessel function of order zero with imaginary argument given by

lo(X):Jo(ix) :n:oZ (n!)2
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Satisfaction of boundary condition (Eq. (14)) requires that

Olkn 'nHo'(n o)lnHz_ Ii_k----_-- ) hi o _ an sin ----7------2hQz(_-z),
n--I

where

,L
eToC ®

Il(x)- dx n:o n!(n+l)l

(17)

The Fourier expansion of z(_-z) on the interval (0,%) is given by

co nl-lz 2 /'_ nrlz
z(_-z)-- _. Bn sin f - where Bn:-FJo z(_-z)sin _ z,n:l

or

{ } nnzZ(l-Z):_ 412 )n+l
n:l _ (-I +1 sin

(18)

Comparing coefficients in Eqs. (17) and (18) gives

an:- 2hO'_2 {(-I )n+' +l } (19)

n:31-[ :3 L_/._To,rknfljnFla_ 1_+h]:o(.E_. )

For n = 2,4,6,... the coefficients an in Eq. (19) are zero. Equations (8), (12),

(16), and (19) then give the temperature in the rod in the form

® =8o+ _-QZ(_-z) -
4hQ_2 cO I

113 _'o(2n+1)3
13--

(213+ I)]'] Z ]:0 [(2 rl II ) ir] r]sin

{k(zn+l)rl Ii [(2n4__l)l-la]+hio[.(2n._t)lqa ]}

(20)

The maximum excess temperature occurs in the middle of the rod where r = 0 and

z = _/2, and is given by
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@-®o A® Q#2 4hQ_2 oo I
= - 8 [[_ _ (2n +1) 3

n:O

(-I) n

{.k(2n_l)]l Ii [,(2n+_)l'[e] +hio[(Zn-_l)Ir[e]}

From the relation Q = D/k = o 1_1, this becomes
max

A®:
Crmax t4 I,_2

8k
4homaxl41._ 2 I I I

5 3 5k]]_ ii_(3__a)+hlo(___1

+ _. i .... (

5 3 5ki"[ I +hi o

(21)

The thermal conductivity k for Hastelloy-X at 982°C (1800°F) is

2
Btu.in 195 x 778 x 12 in.lb

k = 195 = 3.51
2 OF. 144 x 3600 2 OFft.hr, in. sec.

ib

sec.°F

The value of h is given by

Btu 135 x 778 x 12 in.lb
h _ 135 - - 2.43

2o 2 .°Fhr.ft. F 144 x 3600 in.sec

ib

in.sec.°F

-3
At a strain rate of I_l = 3.866 i0X

percent strain amplitude), Oma x = 19212 psi.

and its radius is a = 0.15 in.

-i
sec (i0 cycles per minute at _ 0.6

The length of the specimen is _=i in.

Substitution of these values into Eq. (21) gives the excess temperature at the

center of the rod as
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From this result it can be seen that only the first term in the infinite series

contributes significantly to the result. Figure 71 shows the computed steady state

temperature excess, A_ , in various parts of the specimen obtained by keeping only

the first term in the series expansion in Eq. (20). The radial distribution of

temperature in the bar is almost uniform and the axial distribution is the difference

between a parabolic and sine function.

At room temperature Oma x = i00,000 psi at i0 cycles per minute and k = 60 Btu

in./ft 2. hr. °F. The constant h is probably small, _,i Btu/ft2.hr. °F. Neglecting

the,_series terms which account for the radial outflow of heat, one obtains A_

45°F at i0 cycles/minute and A_ _ 4.5°F at 1 cycle/minute at room temperature.
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APPENDIX 14

RECURSIVE INTEGRATION METHOD FOR FUNCTIONAL THEORY

The uniaxial form of the function theory in Appendix 1 may be written, for

isothermal deformations ( _ = 0), as

E a( a( d(, (i)

'( )c(t) : aE I df (2)

0 ft --{G(t)-G_)} _)(:: d(,
_l(t) :£Z+nlc(t)+n2"jo e O_

(3)

K(t) =K I - K 2 e -n 7R(t) , (4)

o t E 0(___) I-I/nQ(t) -_- d(,

G(t): 3+n4e ]-_-+n61_l({)1 m ' dr,

(5

(6)

:f't I ac I
RCt) I dr. (7)

41a{ I

The decreasing exponential function in Eq. (i) implies that most of the con-

tribution to the integral comes from the region about the upper limit, t, where

Q([) _ Q(t). For general integrals of the form

:_t-{Q(t)-Q(_) I am(()d(,I e Of
(8)
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it may be shownthat the asymptotic expansion of the integral for large values of
t is given by the relation

rh rn ((nQ +'_)
I_ Q Q2 + Q 3 ' (9)

where dots denote differentiation with respect to time.

q

The first term of Eq. (9) may be applied to the integral in Eq. (i) to give an

asymptotic expression for the stress well into the plastic region at large values

of strain and time in the form

o-=_ a---
E_-A (10)

Q

where

,-,,o iOcl ,o (ii)

Since _ >> o/E and E_ >> _ in this large strain region, the asymptotic expression

for the stress takes the form

o- = _+ K@E/n (12)

This relation can also be derived by assuming that _ >> o/E and E_ >> _ in

the uniaxial differential equation appropriate to monotonic loading, viz.,

C:__ 6- :I_,___;_;___]n/_--o_
E

(13)

In a finite element solution the strain increment Ae is supplied to the sub-

routine at the beginning of each load increment, and it is assumed that the strain

rate Ae/At during the load increment is constant. It is, therefore, constant during

each subincrement in a multi-step technique.
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The integrals in Eqs. (i) and (2) contain the expressions (E 9EI$_ - D_I_) and ,

(_c/9_ = 9_/_ - 9o/E_). In an asymptotic expansion of these integrals (valid for

large values of t) the strain rate _/_ is the dominant term in the two preceding

expressions. Since the strain rate term is constant during the finite element lead

increment, it is therefore permissible, in an asymptotic expansion of the integrals,

to assume that the expressions (E _/_ - $_/_) and (_c/_) are constant during

the integration.

Consider the value of the stress an+ 1 at time tn+l, assuming that the values

of the stress on and equilibrium stress _n are known at time tn. Then, from Eq. (i)

tne -{en+l - o('_)}( BEGn+ I -,9,n+ I : E b_"

._.tn+l _{On+l_O({)} ( aE a,o, ) d (: (cr n -Q,n)e-lOn+l-Qn}+ e E a_" a_" "
tn

(14)

For small time increments the exponential term in the integral is approximately

equal to one and the integrand (E _/_ - _/_) may be assumed constant in the

integration over the small time interval. It is also permissible to assume that

(E 9_/9_ - $_/_) is constant in the asymptotic integration appropriate to large

time %ncrements. Hence, for both large and small time increments, the integral

may be approximated in the form:

ftn+'e-{Qn+, - Q(_)}(E ctE
tn a_--- d_,_, tn+l- tn " n

where the subscripts n and n+l refer to the values of the variables at the times

tn and tn+ I.

The preceding integral may be written

j:in+'-{Qn+.-C_(O} f tn+' e-lQn+'-Q(_)}
e d_: tn dq_) dQ _),

d_

(16)
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and since

d_ K

may be assumed to be constant in the integral for both large and small time incre-

ments, the integral on the right-hand side of Eq. (9) takes the form:

ltn + I e -{On+ i-O(_')}
fn e On+,-On

_,7tn+l -tn tn+ I -t n

Equation (15) may thus be integrated in the approximate form:

tn+l -IOn+l-Q(()( O_Etn e E _. +I-'n' I (17)

For large time increments the exponential term vanishes and the integral takes

the asymptotic form (E AE - A_)/AQ = (E_ -_)/O, in agreement with the result in

Eq. (12). For small time increments the integral assumes the approximate value

(E A_ _ An).

Substitution of Eq. (17) into Eq. (14) gives the recurrence relation

_ ,_ e-{°n+l-e_n!_

Crn+'-'O'n+' +(°n-'O'n)e-{On+l-On} + [E(En+l-En)-('O'n+l-_n)] _ Q---n-_+t-Q n /' (18)

Similarly, the recurrence relation for the equilibrium stress integral in Eq. (13)

may be written in the form:

g_n+t=a2+ntcn+t+(an-g_-nlcn)e +n2(Cn+t-C n) Gn+t_G n . (19)
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In the recurrence relations in Eqs. (18) and (19), the values of Qn+l and
Gn+1 at the end of the increment may be determined by the approximate relations

l A .y-"n
Qo+,- Qn:AQ-- E AC II-I/nnt:T At

(19)

and

im_iGn+l-Gn--AG--(n3+n4 e-nSRn+l) AR+n6 Y/'n+ At, (20)

where AR and Ac are defined by the relations

(Gn+l- Gn)
Cn+l-Cn: AC :(En+ I -'_n)- (21)

E

and

Rn+I-Rn:AR:IAcl. (22)

Evidently, the values of On+ I and _n+l depend on IAcl and are therefore

implicitly defined in Eqs. (19) and (20), since IAc[ depends on On+ 1 , and On+ I

depends on _n+l" An iterative technique is therefore required to resolve these

equations. This iterative technique is described in Appendix 15.
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APPENDIX15

RECURSIVEINTEGRATIONMETHODFORFUNCTIONALTHEORY
USEDIN SUBROUTINEHYPELA

The integration algorithm developed in Appendix 14 is now used to integrate
the three dimensional equations of Appendix i. The solution to the implicit re-
cursive relations is obtained by meansof a Newton-Raphsontechnique.

In the following algorithm the symbol "A" in front of a variable refers to
the difference in the variable between the beginning and end of the increment. The
time at the beginning of the increment is denoted by t and at the end of the incre-
ment by t + At.

Since the stress tensor for non-polar media is symmetric, the constitutive re-
lations are written in vector form, so that oI = Oli , 02 = 022, o3 = 033, 04 = o12,
o5 = 023, 06 = o13 with similar definitions applying to cij , Eij and _ij"

In the following algorithm the symbol ei(t) refers to the mechanical strain,
so that

AEi(t): AET(t)-$ i aAG, _i:_o if i>3

wher_ Ae_(t) is the total strain increment. It is assumed that oi(t), _i(t), ci(t),

_i(t), R(t), Q(t) and G(t) are known at the beginning of the increment. Initially,

at time t = 0, oi(t ) = ei(t) = ci(t ) = 0 and R(t) = Q(t) = G(t) = 0, whilst _i(t) =

_i(t) •

To integrate the constitutive equations from time t to time t + At, the follow-

ing operations are required.

Step #i. Compute the values of the material constants at the temperature

O(t + 1/2 At) corresponding to the middle of the subincrement.

Step #2. Assume an initial guess for the inelastic strain increment &c i.

In a subincrement method this guess is taken equal to the devia-

toric strain increment in the first subincrement of the current

load step. In subsequent subincrements the guess is taken from

the preceding subincrement of the current load step.
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Step #3. Computethe inelastic strain at the end of the subincrement
the relation

ci(t +At): ci(t) + AC i

Step #4. Set gi(t + At) = _i(t) as a first guess for the equilibrium
stress at the end of the subincrement.

Step #5. Compute the initial values of the equilibrium stress at the

the subincrement from the relations

from

end of

where

o o{ }o_,(t+at)=-9,+2 £z cT(t+nt)+c42(t+At)+ce(t+At) /-Q,rr ,

o o + 2.G {cz(t+At ) (t+9.z (t+At) :-9,

o o o{ 2 + 2 c2(t+At)}/,_£z3(t+At):-'0"+2"0" c3(t+At) c5(t+At)+ 6 ]]:,

_'4 (t+ At )

0
D,5(t +At)

o
D.6(t+ At)

Step #6.

=2_{Cl(t+At)C4(t+At)+C2(t+A;)c4(t+At)+C5(t+At)c6(t+At)}/_Tr,

:2_{c4(t+At)c6(t+At)+cz(t+At)cs(t+At)+c3(t+At)Cs(t+At)}/_TT,

=2._.{c,(t+At)c6(t+At)+c4(t+At)c5(t+At)+C_(t+At)c6(t+At)}/._.rr,

£ZrT°=-3-2 {CT(t+At)+ 2%(t +At)+ C32(t+ At) + 2 [C42(t+At)+ C_ (t+At)+ 06

Compute the cumulative inelastic strain increment from the relation

AR: -I _-'_i (ACi)2 where Bi =_2 if i>3 •
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Step #7. Let subscript m refer to the numberof iterations.

Step #8.

Set m = 0.

Set m = m + i. This is the start of the iteration loop.

Step #9. Set ARm = AR. Computethe cumulative inelastic strain at the
end of the subincrement from the relation

R(t+At) = R(t) + AR

Step #i0. Evaluate the drag stress at the end of the subincrement from the

relation

-n7R(t+at)
K(t+At)=K I - K2 e

Step #ii. Evaluate the mth guess for AG from the relation

m-I

-n 5 R (t'P/_t)] 2 2 +at)] 2AGm-[n._ +n4 e AR+ n6 At [ i -_-- /_i ,O,i(t.
i:1

Step #12. Compute the inelastic strain at the end of the subincrement from "

the rel_tion

ci(t+At):ci(t)+ac i •

,Step #13. Compute the equilibrium stress at the end of the subincrement from

the recursive relation

O O

_i (t +at, AG m ) :,_j (t+at)+n Mc i (t+At) + (.O,i(t)-£Zi(t)-n I C i (t)) e _aGm
-AGm +ac I-e

AGm

Note that this is an implicit relation for the determination of _i(t + At) since

AG m depends on _i(t + At) if the recovery term involving n 6 is present (cf. Step

#ii). If n 6 = 0 and there is no recovery, this relation for _i(t + At) is explicit

and no iteration is required for its determination.

Step #15. Compute equilibrium stress increment from the relation

A£/, i :£/'i (t+At, AG m )- £/,i(t) •
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If n 6 = 0, skip the Newton-Raphson iteration for _i(t + At) and

go to step #20.

Step #16. Compute the function f(AG m) where

[_.2 2 ]m-if(AGm) :AGm- [n_+n4 e-nsR(t+At)] AR-n6 At _,_- /3 i .0,i (t+At , AGm)--_-

Note that if AGm, the guess for AG computed in Step #ii, is exact, then f(AGm) = 0.

In general f(AGm) # 0 and a Newton-Raphson iteration is required to improve the value

of AGm. (Note that the exact AG m satisfies both Step #13 and the relation f(AGm) =

0.)

Step #17. Compute the derivative

ctf (AG m )

a(AGrn)
I=I

[_ 4:iT /_j "0"j (t+At' AGm)

c1.0.j(t +At, AGrn)

a(AG m )

where

c1(AGm) : - (_/'j (t)-£ j(t)-n ic j(t)) e +n2Ac j +e-AGm-I

(AGm)2

by differentiation of the relation in Step #13.

Step #18. Refine AGm with a Newton-Raphson iteration

f(AG m )

Z_Gm+I'-Z_Grn- af(Z_Grn )

O(AG m)

Step #19. Compute refined value for the equilibrium stress at the end of the

subincrement from the relation

0 _AGm+ I
#.i(t+At,AGm+l) :.C/.i(t+At)+n i ci(t+At)+(.O,i(t)-_,i(t)-n I ci(t))e +Z_c i

- e-AGrn+l%.
AGrn+l I
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Computeequilibrium stress increment from the relation

a_ i :_i(t+At, AGm+I )-£ i (t).

Step #20. Compute the mth guess for AQ from the relation

3ft. _/AR ._l-I/n

AQm-- A,.

Note that AQm depends on oi(t + At) through its dependence on AR (cf. Steps #'s

22 and 24).

Step #21. Compute the stress at the end of the subincrement from the recursive

relation

cri(t+At'aQm): -5--'Gi(t+At)+ai j:l

) -AQm+ o-i(t)-+#-i(t)-ai_l+o-j(t)e

where

2 3 2 I-e
+ 2/zaEi-ai 3 P- _ AEj_A,Q, i

j:l AQ m

This is an implicit relation for oi(t + At, AQm), since AQm depends on oi(t + At),

which must be resolved by Newton-Raphson iteration.

Step #22. Compute the inelastic strain increment from the relation

3

Aci(AQm) : {eliX Z.: A_j + 2/.L AEi -o-i(t+At,AQm)+O-i(t) }/2/_.

Step #23. Compute inelastic strain at the end of the subincrement from the

relation

ci(t+At)= c i(t)+Aci(AQ m).
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Step #24. Computethe cumulative inelastic strain increment

_i 6

Step #24. Computethe function F(AQm) where

F(AQm)-- AQ m K (t +At) At ' At.

Note that AQm was evaluated in Step #20 and is used to evaluate AR (AQm) in Step

#24. If the exact value of AQm is known, then F(AQm ) = O. In general, F(AQm ) # 0

and AQm must be refined by a Newton-Raphson iteration. (Note that the exact AQm

satisfies both Step #21 and the relation F(AQm ) = 0.)

Step #26. Compute the derivative

where

aF(AQm) 3p. ( nl )a(AQrn ) :1- K(t+At) I- -I/n

AR(AQ m) a(AR(AQrn))

At c_(AQm)
At

a(AR(AQ_)) 0 _ [Ac_(AQm)]_' , ' _(Ac_(AQm))c](AQrn): O(AQm) _ /_i : AR(AQrn)":i_l+/_iAci(AQrn) c](AQrn)

The derivative $(Aci(AQm))/_(AQm ) is obtained from differentiation of the

relation for Aci(AQm) in Step #22 in the form

_ (Aci(AQrn)) I °_°-i(t +At, AQrn)

_(AQrn) 2p. 8(AQ m)

{( _ j_ ))eAQm ( 2 _ AEj_2A_i AQme +e -II o.i(t)_ g.i(t)-ai i__o-j( t _ 2FAei-oi_--p.
2 F : j=l (AQrn) z
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Step #27. Refine AQmwith a Newton-Raphsoniteration

F(AQm)

AQrn+t : AQ m- c)F(AQm)

O(AQrn)

Step #28. Compute refined value of stress at the end of the subincrement from !

the relation

o-i(t+At, AQm+ i) :_--D,i(t+At)+a i o-j(t)+ k+-_- Aej
i '=

+(cri ('r)- 52-- Q,i (t)- a i j_ _-crj (t)) e-AO
m+l

2+ 2p.aei-ai- _- Mj :_1AEj - -_- AQ, i AQm+ !

Step #29. Compute refined value of inelastic strain increment from the relation

aci (AQm+l)= {°iX i AEj+ 2p. aE i - o-i (t+At , aQm+l)+ o-[(t)}/2F.
j=l

,Step #30. Compute refined value of cumulative inelastic strain increment

i=l

Step #31. If increment is elastic after two Newton-Raphson iterations, exit

from the iteration loop:

l [AEi]If AR<-i--O- 6 _ :5 i and m=2, go to Step #35.

Step #32.

Step #33.

If m = maximum number of iterations allowed, go to Step #35.

If m < maximum number of iterations allowed, go to Step #8.
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IAR ARm l 1 go to step #8.

I
" -- " > i

Step #34. If I AR I 100

Step #35. The iterative loop is now complete. The state variables at the end

of the subincrement are now given by the values of the quantities

e(t + At), R(t + At), ci(t + At), _i(t + At), Ei(t + At), oi(t + At)

at the updated time increment t + At.

Step #36. Go to Step #i for next time increment.
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA (Continued)

821 CONTINUE
DO 819 J=l,6
DO 819 K=I,6
DIJ,K)=O.

819 CONTINUE
DO 820 J--l,3
DO 820 K=I,3
ALPHA:O.
IF(J.EQ.K) ALPHA:I.
D (J,K)zCS+ALPHA;::C3

82U CONTINUE
D(4,4)-C _,
D(5,5):C4
D(6,6)zCq

903 CONTINUE
Cx-';x¢_::,COMPUTE MARC STRESS INCREMENTS

DO 822 JzI,NGENS
SUMZO.
DO 823 Kzl,NGENS
SUMzSUM +D (j,K) _-'DE (K)

823 CONTINUE
DS(J):SUM+G(J)

822 CONTINUE
C*_.,:c_-'*PUT STATE VARIABLE INCREMENTS INTO

OTEMP(3 ):RB-TEMP(3)
D TEMP ( 16) :D.
TEMPI 16):AK1-AK2_EXP(-AN7*RB)
DO 923 KA-I,6
J:KA+3
D TEMP (J) :OME GE ( K A )-TEMP (J)
DTEMP (J +6) :CE (KA)-TEMP (J+6)

923 CONTINUE
IF(IPR.EC.O) GO TO 12
IF(NELPR.NE.N) GO TO 12
IF(NN.NE.NPRIN) GO TO 12
IF(NCYCLE.EQ.O) NWALK:O
N_ALK--N WALK+ 1
NQzNWALK-2*NCYCLE
NQQZNCYCLE -1
WRITE(6,2O) INC

20 FORMAT( '. INCREMENT' ,I5)
WRITE(6,750) NIT

750 FORMAT( ' ITERATIONS' ,I5)
wRITE (6 ,753) N,NN

753 FORMAT(' ELEMENT',IS,' INTEGRATION
IF(N,4.EO.O) wRITE(6,23) NQ(_

IFINW.GT.O) wRITE(6_39) NCYCLE23 FORMAT( VALUES OF ARAMETERS DURING
1,15)

39 FORMAT(' VALUES OF PARAMETERS DURING
1,15)

WRITE(6_751) TEST
751 FORMAT( ITERATION TEST',FIO.6)

WRITE(6,29)
29 FORMAT( ' STRAIN INCREMENTS' )

WRITE(6,30) (DE(J),J--1,NGENS)
3_ FORMAT(IP6E15.6)

WRITE(6 31) '
31 FORMAT( I STRESS INCREMENTS')

WRITE(6,50) (DS(J).JzI.NGENS)
12 RETURN

END

STORAGE ARRAYS FOR NEXT MARC

POINT',IS)

SOLUTION OF RECYCLE NUMBER'

ASSEMBLY OF RECYCLE NUMBER'

A

INCREMENT
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